Mass Transport in Shallow Turbulent Wake Flow by Planar Concentration Analysis Technique


A planar concentration analysis (PCA) system is used for observing the transport and mixing of a tracer mass in a shallow turbulent free-surface wake flow of a large cylindrical obstacle. The nonintrusive, fieldwise PCA measuring technique is applied to evaluate depth-averaged mass concentrations by making use of light attenuation due to absorption and scattering processes related to a dissolved tracer mass. The scalar fields are decomposed into a low-frequency quasiperiodic part, the coherent flow, and a randomly fluctuating part. From accompanying near-surface velocity measurements, large-scale coherent structures are identified and related to the coherent mass fields. This allows one to assess the role of the large-scale vortices for advection and diffusion in shallow wake flows. The time–mean wake flow displays a self-similar spanwise distribution both for mass and velocity. The longitudinal development of shallow wakes initially shows the growth of unbounded wakes; in the wake far field an attenuated behavior applies.