On Tuesday, May 28, scheduled routine maintenance may cause intermittent connectivity issues which could impact e-commerce, registration, and single sign-on. Thank you for your patience.

Case Studies
Jul 28, 2020

Investigating the Role of Hydrological Model Parameter Uncertainties in Future Streamflow Projections

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 10

Abstract

Calibrated hydrological models forced with the climate data from various climate models have been widely employed for future streamflow projection. But a major cause of concern in such an analysis has been the suite of uncertainties inherent in the modeling chain that begins from the climate models and ends with the hydrological models. The uncertainties contributed by the hydrological models have generally been given a lesser focus. In the present research, the contribution of the hydrological model parameter uncertainty has been investigated. The multiobjective evolutionary algorithm (MOEA) is employed for calibrating the hydrological model, the Soil and Water Assessment Tool (SWAT), developed for the Magpie River, located in Northern Ontario. The calibrated model was then forced with the data from an ensemble of six regional climate models for projecting the scenario streamflow and evaluating associated uncertainties. A significant variation in seasonal water availability is projected for the two scenario periods studied. The contribution of the hydrological model parameter uncertainty in the streamflow projection is found to be significant, lying in the range of 16%–83%, depending on the month.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The following data, models, or code generated or used during the study are available from the corresponding author by request: climate data (observed and gridded); the SWAT model for Magpie River; and the R code for climate model data processing. The R code for the SWAT model calibration and optimization are proprietary or confidential in nature and may only be provided with restrictions. The climate model data used during the study has been extracted from the NA-CORDEX dataset (Mearns 2017).

Acknowledgments

The present research is funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada through the Discovery Grant program to the senior author. The first author’s research is also supported through the Ontario Graduate Scholarship and a University of Windsor scholarship. We acknowledge the World Climate Research Programme’s Working Group on Regional Climate, and the Working Group on Coupled Modelling, formerly the coordinating body of CORDEX and the responsible panel for CMIP5. We also thank the climate modeling groups (listed in Table 1) for producing and making available their model output for the present research on impact assessment. The authors would like to thank Dr. David Hadka and Dr. Patrick M. Reed for providing the executable code of Borg used in this research for the SWAT model calibration. The authors also extend their sincere thanks to the project authorities at Brookfield Renewable for sharing the streamflow data required for the hydrologic model development and holding discussions at various stages of this work.

References

Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan. 2007. “Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.” J. Hydrol. 333 (2–4): 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014.
Addor, N., and J. Seibert. 2014. “Bias correction for hydrological impact studies—Beyond the daily perspective.” Hydrol. Processes 28 (17): 4823–4828. https://doi.org/10.1002/hyp.10238.
Ahl, R., S. Woods, and H. Zuuring. 2008. “Hydrologic calibration and validation of swat in a snow-dominated rocky mountain watershed, Montana, USA.” JAWRA J. Am. Water Resour. Assoc. 44 (6): 1411–1430. https://doi.org/10.1111/j.1752-1688.2008.00233.x.
Alam, S., M. M. Ali, and Z. Islam. 2016. “Future streamflow of Brahmaputra river basin under synthetic climate change scenarios.” J. Hydrol. Eng. 21 (11): 05016027. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001435.
Amin, M. Z. M., A. J. Shaaban, N. Ohara, M. L. Kavvas, Z. Q. Chen, S. Kure, and S. Jang. 2016. “Climate change assessment of water resources in Sabah and Sarawak, Malaysia, based on dynamically-downscaled GCM projections using a regional hydroclimate model.” J. Hydrol. Eng. 21 (1): 05015015. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001242.
Arnold, J. G., et al. 2012. “SWAT: Model use, calibration, and validation.” Trans. ASABE 55 (4): 1491–1508. https://doi.org/10.13031/2013.42256.
Arnold, J. G., and P. M. Allen. 1999. “Automated methods for estimating baseflow and ground water recharge from streamflow records.” JAWRA J. Am. Water Resour. Assoc. 35 (2): 411–424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment. I: Model development.” JAWRA J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
ASABE (American Society of Agricultural and Biological Engineers). 2017. Guidelines for calibrating, validating and evaluating hydrologic and water quality (H/WQ) models. St. Joseph, MI: ASABE.
Bae, D.-H., I.-W. Jung, and D. P. Lettenmaier. 2011. “Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea.” J. Hydrol. 401 (1–2): 90–105. https://doi.org/10.1016/j.jhydrol.2011.02.012.
Bastola, S., C. Murphy, and J. Sweeney. 2011. “The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments.” Adv. Water Resour. 34 (5): 562–576. https://doi.org/10.1016/j.advwatres.2011.01.008.
Bekele, E. G., and J. W. Nicklow. 2007. “Multi-objective automatic calibration of SWAT using NSGA-II.” J. Hydrol. 341 (3–4): 165–176. https://doi.org/10.1016/j.jhydrol.2007.05.014.
Beven, K. 2006. “A manifesto for the equifinality thesis.” J. Hydrol. 320 (1–2): 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007.
Bosshard, T., M. Carambia, K. Goergen, S. Kotlarski, P. Krahe, M. Zappa, and C. Schär. 2013. “Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections.” Water Resour. Res. 49 (3): 1523–1536. https://doi.org/10.1029/2011WR011533.
Brigode, P., L. Oudin, and C. Perrin. 2013. “Hydrological model parameter instability: A source of additional uncertainty in estimating the hydrological impacts of climate change?” J. Hydrol. 476 (Jan): 410–425. https://doi.org/10.1016/j.jhydrol.2012.11.012.
Chakraborty, K., D. Bhaduri, D. C. Uprety, and A. K. Patra. 2014. “Differential response of plant and soil processes under climate change: A mini-review on recent understandings.” Proc. Natl. Acad. Sci. India Sect. B: Biol. Sci. 84 (2): 201–214. https://doi.org/10.1007/s40011-013-0221-7.
Chang, H., and I.-W. Jung. 2010. “Spatial and temporal changes in runoff caused by climate change in a complex large river basin in Oregon.” J. Hydrol. 388 (3–4): 186–207. https://doi.org/10.1016/j.jhydrol.2010.04.040.
Chen, J., F. P. Brissette, and R. Leconte. 2011. “Uncertainty of downscaling method in quantifying the impact of climate change on hydrology.” J. Hydrol. 401 (3–4): 190–202. https://doi.org/10.1016/j.jhydrol.2011.02.020.
Chen, J., F. P. Brissette, P. Liu, and J. Xia. 2017. “Using raw regional climate model outputs for quantifying climate change impacts on hydrology.” Hydrol. Processes 31 (24): 4398–4413. https://doi.org/10.1002/hyp.11368.
Chilkoti, V., T. Bolisetti, and R. Balachandar. 2018. “Multi-objective auto calibration of SWAT model for improved low flow performance for a small snowfed catchment.” Hydrol. Sci. J. 63 (10): 1482–1501. https://doi.org/10.1080/02626667.2018.1505047.
Chilkoti, V., T. Bolisetti, and R. Balachandar. 2019. “Diagnostic evaluation of hydrologic models employing flow duration curve.” J. Hydrol. Eng. 24 (6): 05019009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001778.
Christensen, J., E. Kjellström, F. Giorgi, G. Lenderink, and M. Rummukainen. 2010. “Weight assignment in regional climate models.” Clim. Res. 44 (2–3): 179–194. https://doi.org/10.3354/cr00916.
Clark, M. P., R. L. Wilby, E. D. Gutmann, J. A. Vano, S. Gangopadhyay, A. W. Wood, H. J. Fowler, C. Prudhomme, J. R. Arnold, and L. D. Brekke. 2016. “Characterizing uncertainty of the hydrologic impacts of climate change.” Curr. Clim. Change Rep. 2 (2): 55–64. https://doi.org/10.1007/s40641-016-0034-x.
Criss, R. E., and W. E. Winston. 2008. “Do Nash values have value? Discussion and alternate proposals.” Hydrol. Processes 22 (14): 2723–2725. https://doi.org/10.1002/hyp.7072.
Crossman, J., M. N. Futter, S. K. Oni, P. G. Whitehead, L. Jin, D. Butterfield, H. M. Baulch, and P. J. Dillon. 2013. “Impacts of climate change on hydrology and water quality: Future proofing management strategies in the Lake Simcoe watershed, Canada.” J. Great Lakes Res. 39 (1): 19–32. https://doi.org/10.1016/j.jglr.2012.11.003.
Culbertson, A. M., J. F. Martin, N. Aloysius, and S. A. Ludsin. 2016. “Anticipated impacts of climate change on 21st century Maumee River discharge and nutrient loads.” J. Great Lakes Res. 42 (6): 1332–1342. https://doi.org/10.1016/j.jglr.2016.08.008.
Daggupati, P., N. Pai, S. Ale, K. R. Douglas-Mankin, R. W. Zeckoski, J. Jeong, D. Saraswat, and M. A. Yousef. 2015. “A recommended calibration and validation strategy for hydrologic and water quality models.” Trans. ASABE 58 (6): 1705–1719. https://doi.org/10.13031/trans.58.10712.
Deser, C., A. Phillips, V. Bourdette, and H. Teng. 2012. “Uncertainty in climate change projections: The role of internal variability.” Clim. Dyn. 38 (3–4): 527–546. https://doi.org/10.1007/s00382-010-0977-x.
Dibike, Y., H.-I. Eum, and T. Prowse. 2018. “Modelling the Athabasca watershed snow response to a changing climate.” J. Hydrol.: Reg. Stud. 15 (Feb): 134–148. https://doi.org/10.1016/j.ejrh.2018.01.003.
Dobler, C., S. Hagemann, R. L. Wilby, and J. Stötter. 2012. “Quantifying different sources of uncertainty in hydrological projections in an Alpine watershed.” Hydrol. Earth Syst. Sci. 16 (11): 4343–4360. https://doi.org/10.5194/hess-16-4343-2012.
Ecological Stratification Working Group (Canada). 1996. A national ecological framework for Canada. Ottawa, Canada: The Group.
Efstratiadis, A., and D. Koutsoyiannis. 2010. “One decade of multi-objective calibration approaches in hydrological modelling: A review.” Hydrol. Sci. J. 55 (1): 58–78. https://doi.org/10.1080/02626660903526292.
Engel, B., D. Storm, M. White, J. Arnold, and M. Arabi. 2007. “A hydrologic/water quality model applicati1.” JAWRA J. Am. Water Resour. Assoc. 43 (5): 1223–1236. https://doi.org/10.1111/j.1752-1688.2007.00105.x.
Euser, T., H. C. Winsemius, M. Hrachowitz, F. Fenicia, S. Uhlenbrook, and H. H. G. Savenije. 2013. “A framework to assess the realism of model structures using hydrological signatures.” Hydrol. Earth Syst. Sci. 17 (5): 1893–1912. https://doi.org/10.5194/hess-17-1893-2013.
Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit. 2015. “Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China.” Hydrol. Earth Syst. Sci. 19 (6): 2547–2559.
Ficklin, D. L., Y. Luo, E. Luedeling, and M. Zhang. 2009. “Climate change sensitivity assessment of a highly agricultural watershed using SWAT.” J. Hydrol. 374 (1–2): 16–29. https://doi.org/10.1016/j.jhydrol.2009.05.016.
Field, C. B., R. B. Jackson, and H. A. Mooney. 1995. “Stomatal responses to increased CO2: Implications from the plant to the global scale.” Plant Cell Environ. 18 (10): 1214–1225. https://doi.org/10.1111/j.1365-3040.1995.tb00630.x.
Fischer, G. F., S. Nachtergaele, H. T. Prieler, L. van Velthuizen, and D. W. Verelst, eds. 2008. Global agro-ecological zones assessment for agriculture (GAEZ 2008). Laxenburg, Austria: International Institute for Applied Systems Analysis.
Giorgi, F., C. Jones, and G. R. Asrar. 2009. “Addressing climate information needs at the regional level: The CORDEX framework.” World Meteorol. Organ. (WMO) Bull. 58 (3): 175.
Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1998. “Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information.” Water Resour. Res. 34 (4): 751–763. https://doi.org/10.1029/97WR03495.
Gupta, H. V., T. Wagener, and Y. Liu. 2008. “Reconciling theory with observations: Elements of a diagnostic approach to model evaluation.” Hydrol. Processes 22 (18): 3802–3813. https://doi.org/10.1002/hyp.6989.
Guse, B., D. E. Reusser, and N. Fohrer. 2014. “How to improve the representation of hydrological processes in SWAT for a lowland catchment—Temporal analysis of parameter sensitivity and model performance.” Hydrol. Processes 28 (4): 2651–2670. https://doi.org/10.1002/hyp.9777.
Hadka, D., and P. Reed. 2013. “Borg: An auto-adaptive many-objective evolutionary computing framework.” Evol. Comput. 21 (2): 231–259. https://doi.org/10.1162/EVCO_a_00075.
Haguma, D., R. Leconte, P. Côté, S. Krau, and F. Brissette. 2014. “Optimal hydropower generation under climate change conditions for a northern water resources system.” Water Resour. Manage. 28 (13): 4631–4644. https://doi.org/10.1007/s11269-014-0763-3.
Hopkinson, R. F., D. W. McKenney, E. J. Milewska, M. F. Hutchinson, P. Papadopol, and L. A. Vincent. 2011. “Impact of aligning climatological day on gridding daily maximum–minimum temperature and precipitation over Canada.” J. Appl. Meteorol. Climatol. 50 (8): 1654–1665.
Hutchinson, M. F., D. W. McKenney, K. Lawrence, J. H. Pedlar, R. F. Hopkinson, E. Milewska, and P. Papadopol. 2009. “Development and testing of Canada-wide interpolated spatial models of daily minimum–maximum temperature and precipitation for 1961–2003.” J. Appl. Meteorol. Climatol. 48 (4): 725–741. https://doi.org/10.1175/2008JAMC1979.1.
Jung, I.-W., H. Chang, and H. Moradkhani. 2011. “Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects.” Hydrol. Earth Syst. Sci. 15 (2): 617–633. https://doi.org/10.5194/hess-15-617-2011.
Kannan, N., S. M. White, F. Worrall, and M. J. Whelan. 2007. “Hydrological modelling of a small catchment using SWAT-2000—Ensuring correct flow partitioning for contaminant modelling.” J. Hydrol. 334 (1–2): 64–72. https://doi.org/10.1016/j.jhydrol.2006.09.030.
Karlsson, I. B., T. O. Sonnenborg, J. C. Refsgaard, D. Trolle, C. D. Børgesen, J. E. Olesen, E. Jeppesen, and K. H. Jensen. 2016. “Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change.” J. Hydrol. 535 (Apr): 301–317. https://doi.org/10.1016/j.jhydrol.2016.01.069.
Kollat, J. B., and P. M. Reed. 2006. “Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design.” Adv. Water Resour. 29 (6): 792–807. https://doi.org/10.1016/j.advwatres.2005.07.010.
Kundzewicz, Z. W., and D. Gerten. 2015. “Grand challenges related to the assessment of climate change impacts on freshwater resources.” J. Hydrol. Eng. 20 (1): A4014011. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001012.
Lafaysse, M., B. Hingray, A. Mezghani, J. Gailhard, and L. Terray. 2014. “Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin.” Water Resour. Res. 50 (4): 3317–3341. https://doi.org/10.1002/2013WR014897.
Li, Z., G. Huang, X. Wang, J. Han, and Y. Fan. 2016. “Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.” Sci. Total Environ. 548–549 (Apr): 198–210. https://doi.org/10.1016/j.scitotenv.2016.01.002.
Ludwig, R., et al. 2009. “The role of hydrological model complexity and uncertainty in climate change impact assessment.” Adv. Geosci. 21: 63–71. https://doi.org/10.5194/adgeo-21-63-2009.
Madsen, H. 2000. “Automatic calibration of a conceptual rainfall–runoff model using multiple objectives.” J. Hydrol. 235 (3): 276–288. https://doi.org/10.1016/S0022-1694(00)00279-1.
Majone, B., C. I. Bovolo, A. Bellin, S. Blenkinsop, and H. J. Fowler. 2012. “Modeling the impacts of future climate change on water resources for the Gállego river basin (Spain).” Water Resour. Res. 48 (1). https://doi.org/10.1029/2011WR010985.
Maraun, D. 2012. “Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums.” Geophys. Res. Lett. 39 (6). https://doi.org/10.1029/2012GL051210.
Mearns, L. O. 2017. The NA-CORDEX dataset, version 1.0. Boulder, CO: NCAR Climate Data Gateway.
Mendoza, P. A., M. P. Clark, N. Mizukami, E. D. Gutmann, J. R. Arnold, L. D. Brekke, and B. Rajagopalan. 2016. “How do hydrologic modeling decisions affect the portrayal of climate change impacts?” Hydrol. Processes 30 (7): 1071–1095. https://doi.org/10.1002/hyp.10684.
Mendoza, P. A., M. P. Clark, N. Mizukami, A. J. Newman, M. Barlage, E. D. Gutmann, R. M. Rasmussen, B. Rajagopalan, L. D. Brekke, and J. R. Arnold. 2015. “Effects of hydrologic model choice and calibration on the portrayal of climate change impacts.” J. Hydrometeorol. 16 (2): 762–780. https://doi.org/10.1175/JHM-D-14-0104.1.
Mockler, E. M., K. P. Chun, G. Sapriza-Azuri, M. Bruen, and H. S. Wheater. 2016. “Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations.” Adv. Water Resour. 97 (Nov): 299–313. https://doi.org/10.1016/j.advwatres.2016.10.008.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Muerth, M. J., B. Gauvin St-Denis, S. Ricard, J. A. Velázquez, J. Schmid, M. Minville, D. Caya, D. Chaumont, R. Ludwig, and R. Turcotte. 2013. “On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff.” Hydrol. Earth Syst. Sci. 17 (3): 1189–1204. https://doi.org/10.5194/hess-17-1189-2013.
Murchie, K. J., and K. E. Smokorowski. 2004. “Relative activity of brook trout and walleyes in response to flow in a regulated river.” North Am. J. Fish. Manage. 24 (3): 1050–1057.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models. I: A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. SWAT Theoretical documentation, version 2009. College Station, TX: Texas A&M Univ.
Oni, S. K., P. J. Dillon, R. A. Metcalfe, and M. N. Futter. 2012. “Dynamic modelling of the impact of climate change and power flow management options using STELLA: Application to the Steephill Falls reservoir, Ontario, Canada.” Can. Water Resour. J. 37 (2): 125–148. https://doi.org/10.4296/cwrj3702831.
Ontario Ministry of Natural Resources. 2004. Provincial land cover 2000 edition (27 class): Geospatial Data. Spectranalysis for Ontario Ministry of Natural Resources, Science and Information Branch, Inventory, Monitoring and Assessment Section. Peterborough, Canada: Ontario Ministry of Natural Resources.
Ontario Ministry of Natural Resources. 2013. Provincial digital elevation model, v. 3.0: Geospatial data. Ontario Ministry of Natural Resources and Forestry, Provincial Mapping Unit. Peterborough, Canada: Ontario Ministry of Natural Resources.
Pachauri, R. K., et al. 2014. Climate change 2014: Synthesis report: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: Intergovernmental Panel on Climate Change.
Parker, W. S. 2013. “Ensemble modeling, uncertainty and robust predictions: Ensemble modeling.” Wiley Interdiscip. Rev. Clim. Change 4 (3): 213–223. https://doi.org/10.1002/wcc.220.
Peel, M. C., and G. Bloschl. 2011. “Hydrological modelling in a changing world.” Prog. Phys. Geogr. 35 (2): 249–261. https://doi.org/10.1177/0309133311402550.
Pfannerstill, M., B. Guse, and N. Fohrer. 2014a. “A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments.” Hydrol. Processes 28 (22): 5599–5612. https://doi.org/10.1002/hyp.10062.
Pfannerstill, M., B. Guse, and N. Fohrer. 2014b. “Smart low flow signature metrics for an improved overall performance evaluation of hydrological models.” J. Hydrol. 510 (Mar): 447–458. https://doi.org/10.1016/j.jhydrol.2013.12.044.
Phillips, T. J., and P. J. Gleckler. 2006. “Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics.” Water Resour. Res. 42 (3). https://doi.org/10.1029/2005WR004313.
Piani, C., J. O. Haerter, and E. Coppola. 2010. “Statistical bias correction for daily precipitation in regional climate models over Europe.” Theor. Appl. Climatol. 99 (1–2): 187–192. https://doi.org/10.1007/s00704-009-0134-9.
Poulin, A., F. Brissette, R. Leconte, R. Arsenault, and J.-S. Malo. 2011. “Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin.” J. Hydrol. 409 (3–4): 626–636. https://doi.org/10.1016/j.jhydrol.2011.08.057.
Prudhomme, C., and H. Davies. 2009. “Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate.” Clim. Change 93 (1–2): 197–222. https://doi.org/10.1007/s10584-008-9461-6.
Rahman, M., T. Bolisetti, and R. Balachandar. 2012. “Hydrologic modelling to assess the climate change impacts in a Southern Ontario watershed.” Can. J. Civ. Eng. 39 (1): 91–103. https://doi.org/10.1139/l11-112.
Rajib, M. A., V. Merwade, and Z. Yu. 2016. “Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture.” J. Hydrol. 536 (May): 192–207. https://doi.org/10.1016/j.jhydrol.2016.02.037.
Reed, P. M., and D. Hadka. 2014. “Evolving many-objective water management to exploit exascale computing.” Water Resour. Res. 50 (10): 8367–8373. https://doi.org/10.1002/2014WR015976.
Reusser, D. E., and E. Zehe. 2011. “Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity.” Water Resour. Res. 47 (7). https://doi.org/10.1029/2010WR009946.
Rostamian, R., A. Jaleh, M. Afyuni, S. F. Mousavi, M. Heidarpour, A. Jalalian, and K. C. Abbaspour. 2008. “Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran.” Hydrol. Sci. J. 53 (5): 977–988. https://doi.org/10.1623/hysj.53.5.977.
Rouhani, H., P. Willems, G. Wyseure, and J. Feyen. 2007. “Parameter estimation in semi-distributed hydrological catchment modelling using a multi-criteria objective function.” Hydrol. Processes 21 (22): 2998–3008. https://doi.org/10.1002/hyp.6527.
Sawicz, K., T. Wagener, M. Sivapalan, P. A. Troch, and G. Carrillo. 2011. “Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA.” Hydrol. Earth Syst. Sci. 15 (9): 2895–2911. https://doi.org/10.5194/hess-15-2895-2011.
Schaefli, B. 2015. “Projecting hydropower production under future climates: A guide for decision-makers and modelers to interpret and design climate change impact assessments.” Wiley Interdiscip. Rev.: Water 2 (4): 271–289. https://doi.org/10.1002/wat2.1083.
Shadkam, S., F. Ludwig, P. van Oel, Ç. Kirmit, and P. Kabat. 2016. “Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake.” J. Great Lakes Res. 42 (5): 942–952. https://doi.org/10.1016/j.jglr.2016.07.033.
Shafii, M., and F. D. Smedt. 2009. “Multi-objective calibration of a distributed hydrological model (WetSpa) using a genetic algorithm.” Hydrol. Earth Syst. Sci. 13 (11): 2137–2149. https://doi.org/10.5194/hess-13-2137-2009.
Shrestha, R. R., Y. B. Dibike, and T. D. Prowse. 2012. “Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed.” Supplement, J. Great Lakes Res. 38 (S3): 83–94. https://doi.org/10.1016/j.jglr.2011.02.004.
Smakhtin, V. U. 2001. “Low flow hydrology: A review.” J. Hydrol. 240 (3): 147–186. https://doi.org/10.1016/S0022-1694(00)00340-1.
Smokorowski, K. E., R. A. Metcalfe, S. D. Finucan, N. Jones, J. Marty, M. Power, R. S. Pyrce, and R. Steele. 2011. “Ecosystem level assessment of environmentally based flow restrictions for maintaining ecosystem integrity: A comparison of a modified peaking versus unaltered river.” Ecohydrology 4 (6): 791–806.
Steele-Dunne, S., P. Lynch, R. McGrath, T. Semmler, S. Wang, J. Hanafin, and P. Nolan. 2008. “The impacts of climate change on hydrology in Ireland.” J. Hydrol. 356 (1–2): 28–45. https://doi.org/10.1016/j.jhydrol.2008.03.025.
Tebaldi, C., and R. Knutti. 2007. “The use of the multi-model ensemble in probabilistic climate projections.” Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365 (1857): 2053–2075. https://doi.org/10.1098/rsta.2007.2076.
Teutschbein, C., and J. Seibert. 2012. “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods.” J. Hydrol. 456–457 (Aug): 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
Thorne, R. 2011. “Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin.” Hydrol. Earth Syst. Sci. 15 (5): 1483–1492. https://doi.org/10.5194/hess-15-1483-2011.
Tung, Y. K., and B. C. Yen. 2005. Hydrosystems engineering uncertainty analysis. New York: McGraw Hill.
van Werkhoven, K., T. Wagener, P. Reed, and Y. Tang. 2009. “Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models.” Adv. Water Resour. 32 (8): 1154–1169. https://doi.org/10.1016/j.advwatres.2009.03.002.
Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian. 2003. “A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters.” Water Resour. Res. 39 (8). https://doi.org/10.1029/2002WR001642.
Wagener, T., and A. Montanari. 2011. “Convergence of approaches toward reducing uncertainty in predictions in ungauged basins.” Water Resour. Res. 47 (6). https://doi.org/10.1029/2010WR009469.
Wilby, R. L. 2005. “Uncertainty in water resource model parameters used for climate change impact assessment.” Hydrol. Processes 19 (16): 3201–3219. https://doi.org/10.1002/hyp.5819.
Wilby, R. L., and I. Harris. 2006. “A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK.” Water Resour. Res. 42 (2). https://doi.org/10.1029/2005WR004065.
Wu, K., and C. A. Johnston. 2007. “Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model.” J. Hydrol. 337 (1–2): 187–199. https://doi.org/10.1016/j.jhydrol.2007.01.030.
Zhang, X., R. Srinivasan, and M. V. Liew. 2010. “On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model.” Hydrol. Processes 24 (8): 955–969. https://doi.org/10.1002/hyp.7528.
Zhu, Q., X. Zhang, C. Ma, C. Gao, and Y.-P. Xu. 2016. “Investigating the uncertainty and transferability of parameters in SWAT model under climate change.” Hydrol. Sci. J. 61 (5): 914–930. https://doi.org/10.1080/02626667.2014.1000915.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 10October 2020

History

Received: Feb 28, 2019
Accepted: May 11, 2020
Published online: Jul 28, 2020
Published in print: Oct 1, 2020
Discussion open until: Dec 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Vinod Chilkoti [email protected]
Ph.D. Candidate, Dept. of Civil and Environmental Engineering, Univ. of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4 (corresponding author). ORCID: https://orcid.org/0000-0003-1164-9684. Email: [email protected]
Ram Balachandar [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. Windsor, 401 Sunset Ave., Windsor, ON, Canada N9B 3P4. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share