Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.


Hydrologic modeling efforts in the Great Lakes region of North America are a fundamental component for the understanding and management of water resources impacting more than 30 million people in Canada and the United States (USEPA, n.d.). At the larger scale, these models are used for operational forecasting of Great Lakes water levels or for evaluating the impacts of climate change. At the smaller or regional scales, these models can be used for reservoir management, water supply, floodplain mapping, and a multitude of other applications. Multimodel development and careful model intercomparisons can be a critical part of improving simulation or forecasting skills, as well as capturing the uncertainty in any future climate assessments (Wada et al. 2013; Warszawski et al. 2014; McSweeney and Jones 2016; Rosenzweig et al. 2017; Frieler et al. 2017; Huang et al. 2017).
There is a long history of hydrologic model comparison efforts, many of which are outlined below. The following review of past hydrologic model intercomparison studies is focused mainly on studies that (1) compare models in watersheds of at least hundreds of km2 with a sample size of at least 10 watersheds; and (2) include the participation of multiple independent modeling groups.
The River Forecasting Centers of the National Weather Service (NWS) in the United States launched a Distributed Model Inter-Comparison project (DMIP) in the early 2000s to explore the skill of distributed hydrologic models for river forecasting compared with the operational, lumped models in place at the NWS at that time. In a first phase, 12 distributed models set up by 12 international groups were compared to the lumped Sacramento (Burnash et al. 1973; Burnash and Singh 1995) model (SAC-SMA) set up by the NWS Office of Hydrologic Development (Smith et al. 2004) for flood operations. The effort was initiated to create an organized and controlled experiment to compare streamflow simulations using identical forcing, verification periods, and modeling points. Reed et al. (2004) found that the skill of the model operator has a significant impact on the model performance, and were not able to identify a model that clearly outperforms other models. Similarly, in a very recent paper by Menard et al. (2020) on snow-model intercomparison, the skill of the modeler was found to be an overarching determinant in model performance. In the second phase of the DMIP experiment, DMIP-2 (Smith et al. 2012), data quality and quantity were improved along with the selection of more evaluation points and variables beyond traditional streamflow estimates. Fifteen participating distributed models and two lumped models (SAC-SMA and GR4J) were evaluated in DMIP-2. Results showed that the distributed models outperform lumped models at modeled interior points of watersheds regarding hourly streamflow. Although not clearly emphasized in the study, one distributed model was superior to other models in several aspects analyzed. That model is the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) set up by the NWS Office of Hydrologic Development, referred to as the OHD model in their study.
Another relevant study is the Protocol for the Analysis of Land Surface Models (PALS) for the Land Surface Model Benchmarking Evaluation Project (PLUMBER) study by Best et al. (2015). This study focused on land surface rather than traditional hydrologic models. One novelty of this study was that the complex models were compared against a baseline of purely data-driven regression models. The study surprisingly found that these data-driven models reliably outperformed the complex physically based models regarding simulated sensible and latent heat fluxes, although the reason for this was not explored.
Another relevant multimodel comparison project is the Model Parameter Estimation Experiment (MOPEX), which primarily focused on model calibration techniques for hydrologic models, but also allowed for hydrologic model comparison. One researcher noted that “MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience” (Duan et al. 2006). One important objective of the second and third MOPEX workshops was to compare eight hydrologic models over 12 catchments in the southeastern United States. Core findings of Duan et al. (2006) are that model calibration has a huge potential to improve model performance and that different models represent hydrologic processes differently, hence suggesting that model ensembles may be a way to improve predictions. This set of catchments has since been used as a benchmark set of catchments for many further studies (Kavetski and Clark 2010; Herman 2012; Evin et al. 2014; Cuntz et al. 2016; McInerney et al. 2017; Spieler et al. 2020).
A more recent intercomparison study by de Boer-Euser et al. (2017) focused on the evaluation of multiple models by showing that, although they perform similarly for the entire flow regime, they show clear differences during specific events. In this study, a blind validation was performed to test the models’ transferability in space and time. For these experiments, the modelers were given only forcing data but no discharge observations. The study found that the 11 mostly lumped models performed similarly based on general metrics such as the Nash–Sutcliffe efficiency (NSE). Significant differences in performance could only be diagnosed with a closer look at predictions on an event-by-event basis.
As these previous studies have shown, model intercomparisons can help to understand the differences between models. They can identify locations where some models outperform others, and thus they learn from each other. Model intercomparison projects (MIPs) are usually time-intensive efforts that can be quite challenging because of the wide range of modeling approaches, especially in hydrology. Such differences arise from forcing, basin segmentation, and physical detail differences in the modeling approach. Aggregation or regridding of input forcing data are model specific, with some models requiring many more surface variables. There are also variations in the use of geophysical data—most conceptualized models might not use geophysical data at all (e.g., GR4J, Perrin et al. 2003), while more physically based models classify soil and land cover types (e.g., VIC, Liang et al. 1994; Liang 2003) and others might make direct use of gridded soil and land cover maps at their native resolution (e.g., mHM, Samaniego et al. 2010; Kumar et al. 2013).
After addressing the time-consuming nature and the need for expert knowledge required to set up several models over the same domain, one must then decide which model outputs to compare. In hydrologic models, streamflow is the fundamental and most important and common output variable because many other output variables (e.g., soluble nutrients) depend on the accurate simulation of streamflow. Note that the streamflow at a basin’s outlet is the integration of all hydrological processes within the basin. Other hydrologic variables, such as evaporation, soil moisture, and snow depth, are typically measured at the point scale, but often simulated at a variety of spatial and temporal scales within each model, making intercomparison difficult. Moreover, these state variables may or may not be explicitly simulated in some conceptual or Machine Learning models. Last, decisions about model evaluation metrics and calibration strategies need to be made. Several of these decisions are dependent on the region and the research questions in place.
International collaborators conducted a sequence of recent model intercomparison studies in subregions of the Great Lakes, called the Great Lakes Runoff Model Intercomparison Project (GRIP). The sequence started in 2014 with Lake Michigan (GRIP-M), which is entirely located in the United States (Fry et al. 2014). The intercomparison was performed for five models ranging from lumped to distributed physical models. The simulated runoff was compared at 20 stations, while the models used different model inputs and forcing. In 2017, a study was performed for the Lake Ontario watershed (GRIP-O) located on both sides of the Canada-US border (Gaborit et al. 2017a). Two lumped models were compared using two different precipitation forcings, resulting in very satisfactory simulation performances independent of model and forcing used. This was even true when using the simple area-ratio method to extrapolate measured flows to the entire watershed including ungauged locations. Gaborit et al. (2017b) extended the set of models to three distributed models (GEM-Hydro, MESH-CLASS, and WATFLOOD) setup over Lake Ontario, similar to GRIP-O. The models are forced with the same meteorologic variables and geophysical dataset. They share the same calibration algorithm and objective function. The study shows that GEM-Hydro is competitive with MESH and WATFLOOD regarding streamflow.
This sequence of GRIP model intercomparisons is extended in this study to Lake Erie, which is the shallowest of the Great Lakes. Lake Erie is prone to algae blooms with toxic concentration (Michalak et al. 2013; Schmale et al. 2019). The Lake Erie watershed is significantly affected by urban and agricultural runoff such as overfishing, pollution, and eutrophication (Thompson et al. 2019; Ho and Michalak 2017; Dolan and McGunagle 2005) as well as record high water levels resulting in lakeshore flooding, erosion, and record high outflows to Lake Ontario (IJC 2019a, b; USACE 2020). The Lake Erie watershed is, however, home to about one-third of the population of the entire Great Lakes basin. Approximately 12 million people live in 17 metropolitan areas such as metro Detroit (MI), Cleveland (OH), Toledo (OH), Buffalo (NY), and ondon (ON).
There is significant interest among researchers and operational modelers to have various research and operational models assessed for agility and adequacy across the watershed, as demonstrated by the number of operational and research groups (14) agreeing to participate in the intercomparison. The goals of this study are to assess if models can be identified that outperform others, and if there are locations in the watershed that cannot be modeled reliably; furthermore, a third goal is to evaluate differences between modeling agencies and model classification, such as comparing lumped and distributed models against data-driven models. It is worth noting that previous model intercomparison initiatives in hydrology (except PLUMBER) have largely focused on investigating process-based models (conceptual or physically based) but did not include data-driven models as we did in this study.
In this study, we compared three distinct groups of models, with 17 models in total. These models comprise two data-driven systems serving as baseline benchmarks, seven lumped and locally calibrated, and eight distributed and globally calibrated models. The models are configured and implemented by a group of 33 international collaborators over the Lake Erie watershed using data derived from the same gridded forcing inputs and observed streamflow as the calibration target. These models were evaluated at 46 calibration sites, and seven validation sites were tested in a blind validation similar to de Boer-Euser et al. (2017). The setup used in this study was intended to be a living database, making it easy to add additional models for evaluation if future model revisions lead to more accurate streamflow simulations. The study informs how to design and then formulate research questions for a follow-up model intercomparison over the entire Great Lakes (GRIP-GL) similar to the DMIP and DMIP-2 approach. GRIP-E is also meant to identify a subset of higher quality models for inclusion in the future GRIP-GL study.

Materials and Methods

This section will introduce the major study organization: the study domain; the comparison of the two objectives regarding the models; and the streamflow gauging stations at which the models are compared. The participating models will then be briefly introduced, while the more detailed model descriptions are provided in the Supplemental Materials. Following this, the meteorologic forcing and geophysical datasets will be introduced Last, the model comparison procedure will be explained.

Study Organization and Decision Making

This study represents a significant multiyear effort requiring the collaboration of more than 30 researchers from 20 organizations. Prior to inviting teams to participate in the study, the project leads made three key study design decisions: (1) participating teams would be forced to utilize exactly the same forcing data; (2) the project datasets and model outputs would be archived in a way that this study could serve as a living intercomparison benchmark; and (3) all other study design decisions would be made by consensus by all collaborators in the project. This required participants to agree to monthly meetings, and these meetings continued over a period of 2 years. In addition, as the final study design matured, we continued to advertise open participation widely and brought in several new participating teams, even into the second year of the project. These key decisions and our collaborative approach to study design created buy-in and trust, and helped motivate participating teams (almost all of which had no explicit funding to participate) to stay involved.

Modeling Domain

The modeling domain for Lake Erie is specified by the Great Lakes Aquatic Habitat Framework (GLAHF 2016) (Wang et al. 2015) (Fig. 1). The total area of the local Lake Erie watershed is 103,666  km2, of which 76,352  km2 is the land surface draining into the lake. The shapefile of the modeling domain and subwatersheds are available in the folder “shapefiles” on the GitHub associated with this publication (see Data Availability Statement for URL).
Fig. 1. The subbasins used in this study for (a) objective 1 (low-human impact watersheds); and (b) objective 2 (most downstream gauges) are highlighted with their colored delineated shape. Blue shapes indicate subbasins used for calibration and red shapes indicate validation basins. The Lake Erie watershed is shown as reference as a light grey shaded area. (c) The 15-km gridded forcing data are shown for one point in time (January 1, 2012. 6:00 p.m. UTC). (d) Some models processed the gridded forcings into, for example, lumped forcings per subbasin.
The average elevation along the shoreline is 132 m, while the highest elevation in the local Lake Erie watershed is 697 m south of Buffalo (eastern-most corner of watershed), making this basin relatively low relief. The mean elevation of the study area is 238 m based on the 15 arcsec (500  m) resolved NASA’s shuttle radar topography mission (SRTM)-conditioned HydroSHEDS digital elevation map (Lehner et al. 2008). Besides water (25.6%), the study area is primarily cropland (51.3%), savannas (e.g., 10%–60% tree cover with canopy >2m, 12.2%), forest (2.7%), and urban areas (5.9%). The largest urban areas are metro Detroit (MI), Cleveland (OH), Toledo (OH), Buffalo (NY), and London (ON). These estimates were derived using the MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (MCD12Q1_006) provided by the USGS (Friedl and Sulla-Menashe 2019). The main soil classes are heavy clay (15.7%) mostly north of Lake Erie, some patches of silt loam (4.9%) also north of the lake, and a patch of silty clay (2.8%) northwest of the lake. Everywhere else, the soil is predominately silt (50.0%) or covered with waterbodies (26.6%). These estimates were derived using the Harmonized World Soil Database v1.2.

Objectives of Model Intercomparison

This study focused on two different objectives to compare the models: (1) model performance in absence of human impacts; and (2) model performance and reliability for simulating lake water budgets. The first objective is regarded to be an easier task for hydrologic models when nonnatural impacts, such as reservoir operations, urban sealed areas, and irrigation do not need to be considered. The second objective was selected to evaluate the models’ performance in generating reliable inflows to the lake to capture the important requirements of understanding the lake water budget. Participating groups were given the option of contributing model results for one or both of these objectives.

Streamflow Gauging Stations

The streamflow gauging stations were selected based on institutionally important streamflow gauge stations from both NOAA-GLERL (Hunter, personal communication, 2018) and Environment and Climate Change Canada (Seglenieks, personal communication, 2018) and have been used in previous studies (Haghnegahdar 2015). From this proposed set of stations, only stations with drainage areas above 200  km2 were selected to avoid catchments with flashy behavior. To classify regulation in their databases, the Water Survey Canada (WSC) and USGS labels of nonregulated/regulated and reference/nonreference were used to group stations. Only stations with tag nonregulated and reference were selected for objective 1. For the second objective, the most downstream stations of the set were selected regardless of whether they are regulated or not. The lower limit of a 200-km2 drainage area was also applied to objective 2. The data were then collected from WSC and USGS and formatted into NetCDF including unit conversion to (m3s1) for USGS stations that are reported in imperial units (ft3s1). The data are available in the folders, “data/objective_1” and “data/objective_2” on the GitHub associated with this publication (see Data Availability Statement for URL). In total, 28 stations were used for objective 1 and 31 stations for objective 2, while 13 appear in both objectives because they are most downstream and of low human impact. A detailed list of these gauges, including their drainage areas and locations, can be found in the Supplemental Materials (Table S1). The delineated subwatersheds draining to the selected stations are shown in Figs. 1(a and b) for objectives 1 and 2, respectively. An additional set of seven streamflow gauge stations was used for spatial validation. Please note that there was no temporal validation performed in this study due to the short period of available meteorologic forcings. All seven stations have a drainage area larger than 200  km2 and are not separated into objective 1 or objective 2 stations, but rather were used to evaluate both objectives. Based on results obtained during calibration, an improved quality check in selecting these validation stations was applied. All stations were visually inspected and stations in highly urbanized areas were discarded.

Participating Models

The models participating can be grouped into three groups of approaches: Machine Learning models; models that are calibrated for each individual subwatershed; and models that are calibrated for the entire domain.The individual models in each group are briefly described, respectively, in the following subsections, and a much more comprehensive description of the specific model setups and details about the calibration can be found in the Supplemental Materials. A list of all models including the leading modelers, calibration strategy, and spatiotemporal resolution can be found in Table 1. A much more detailed version of this table, including details on data preparation, can be found online in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see Data Availability Statement for URL).
Table 1. List of participating models specifying coauthors responsible for model setups, calibration, and runs
Machine Learning models:
 ML-LSTMGauch & LinGlobalDailySubwatersheds (46)
 ML-XGBoostGauch & LinGlobalDailySubwatersheds (46)
Hydrologic models with calibration of each gauge individually (local calibration):
 LBRMFry & BradleyLocalDailySubwatersheds (28)
 GR4J-lpShen & TolsonLocalDailySubwatersheds (46)
 GR4J-sdShen & TolsonLocalDailySubwatersheds (154 obj. 1; 466 obj. 2)
 HYMOD2-DSRoy & WiLocalDailySubwatersheds (each containing multiple cells of 15 km)
 SWAT-EPANi & YuanLocalDailyHRU
 SWAT-GuelphShrestha & DaggupatiLocalDailyHRU
 mHM-WaterlooMcLeod, Kumar, & BasuLocalHourlyGridded: 0.125°
Hydrologic and land-surface models with calibration of entire domain (global calibration):
 mHM-UFZRakovec, Samaniego, & AttingerGlobalHourlyGridded: 0.125°
 HYPEAwoye & StadnykGlobalDailySubwatersheds (644)
 VICShen & TolsonGlobalHourlyGridded: tiles (1,390)
 VIC-GRUGharariGlobalHourlyGRUs (2,380)
 GEM-HydroGaboritGlobalLSS 5 min; Rout. 30–600 sGridded: LSS 10 km; Rout. 1 km
 MESH-SVSGaborit & PrinczGlobalLSS 5 min; Rout. 30–600 sGridded: LSS 10 km; Rout. 10 km (calib) and 1 km (final run)
 MESH-CLASSHaghnegahdar, Elshamy, & PrinczGlobalLSS 30 min; Rout. 30–600 sGridded: LSS 10 km; Rout. 1 km
 WATFLOODSeglenieks & TemgouaGlobalHourlyGridded: 10 km (calib); 1 km (final run)

Note: Models were either calibrated for each individual gauging station (local) or had a global setup for all gauges or gauges of one objective. Further, the temporal and spatial resolution for each model was specified. The models were separated into three groups (see italic captions in table): machine learning (ML) models, hydrologic models that are calibrated at each gauge, and models that have a global setup. The datasets used to setup the models are listed in Table 2. A more detailed specification, including version numbers and forcing data preparation, is available in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see Data Availability Statement for URL). Please be aware that different resolutions might be used for the land-surface scheme (LSS) and the routing component (Rout.).

Note that the decision was made that all participating modeling teams would be free to decide how to calibrate their models. Most were calibrated automatically. Some were calibrated stepwise and in a combination of manual and automatic calibration. It was agreed that unifying the calibration methods would not present a fair comparison, given the range in complexity and type of models. Details about the parameters calibrated, calibration budgets, and algorithms and strategies can be found in the Supplemental Materials.

Machine Learning Models

Two types of data-driven models were used in this study: gradient-boosted regression tree (GBRT) framework XGBoost (Chen and Guestrin 2016) and long short-term memory (LSTM) architecture (Hochreiter and Schmidhuber 1997). The models are called ML-XGBoost and ML-LSTM in this study. The models were trained for the entire domain corresponding to a global calibration similar to the models discussed in the Models Calibrated for Entire Domain: Global Calibration section. The global setup allowed a seamless computation of the spatial validation results. Objectives 1 and 2 streamflow gauging stations were handled together, meaning that the models were trained with all 46 stations together leading to a single final model setup. The Machine Learning models were built and fitted to data just like the traditional hydrologic models in that streamflow before day t is not considered an independent variable to predict streamflow on day t.

Models Calibrated for Individual Subbasins: Local Calibration

Seven models were set up and calibrated for each of the 46 streamflow gauging station subwatersheds. These models range from conceptual lumped systems to gridded semidistributed approaches; however, they were all calibrated individually for each specific subwatershed.
Participating teams each decided independently that locally calibrated models are either transferred to validation basins using proximate donor basins and an area-ratio method (Fry et al. 2014) or the nearest-neighbor approach. Details on which donor station was used to derive the estimate of each validation station can be found in the README files for each of the models described in this section (e.g., “data/objective_1/lake-erie/validation/model/HYMOD2-DS/README.md” on the on the GitHub associated with this publication).
The large basin runoff model (LBRM) was described in Croley (1983), with recent modifications described in Gronewold et al. (2017). LBRM is a lumped conceptual model that propagates daily precipitation and temperature into subbasin runoff. LBRM is the only rainfall-runoff model that is used operationally to produce forecasts of runoff for use in water-level forecasts on a seasonal to interannual basis. It is set up and run by the USACE–Detroit District. Hence, the model is discretized into the 29 subwatersheds important for the USACE. Because the primary application of LBRM is simulating total runoff contribution to the Great Lakes, calibration conventionally uses area-ratio estimates of runoff for each operational subbasin of interest (which are defined by outlets typically downstream of gauging stations) as observations, rather than using streamflow gauge data directly. This approach was used in the current study. In reality, some of the project validation gauges may have been incorporated to the area-ratio estimates used for calibration. As a result, information from those validation gauges may be contained within the calibration dataset. The results for LBRM at the validation stations are, hence, not considered in the results and discussion (although they are shown for completeness).
The GR4J rainfall-runoff model is a parsimonious lumped model with four parameters and is usually operated at a daily scale (Perrin et al. 2003). The original four-parameter GR4J model is coupled with the two-parameter CemaNeige snow module (Valéry et al. 2014). The GR4J models are implemented in the Raven hydrologic modeling framework (Craig et al. 2020). The model is set up in two different modes: a fully lumped version where each of the 46 subwatersheds are handled as one production storage, and a semidistributed version where each subwatershed is discretized into subunits that are then routed to the outlet. In this study, these models are called GR4J-Raven-lp and GR4J-Raven-sd, respectively. The nearest-neighbor method is used to derive the streamflow time series for the validation stations.
HYMOD (Boyle et al. 2000) is a conceptual hydrologic model for catchment-scale simulation of rainfall-runoff processes. In this study, we used a modified version of the original HYMOD model, the new HYMOD2 (Roy et al. 2017) in a distributed setup (DS), named HYMOD2-DS. The 12 parameters of the model were calibrated for each subwatershed independently and validation estimates were derived using the nearest-neighbor method.
The soil and water assessment tool (SWAT) model is a semidistributed process-based hydrologic and water quality model considering the physical characteristics of the watershed including surface elevation, soil type, land use, and factors affecting water routing within the watershed (Arnold et al. 1993; Neitsch et al. 2011). Two setups of SWAT contriubted to this study: The first one is set up by USEPA and will be referred to as SWAT-EPA herein. The second one, SWAT-Guelph, is set up by the University of Guelph. Due to personnel adjustments at USEPA during the course of this project, SWAT-EPA only contributed a setup for objective 1 in calibration mode, but was not able to provide objective 2 calibration results and any validation results. The validation results for SWAT-Guelph are derived using the area-ratio method.
The mesoscale hydrologic model (mHM) (Samaniego et al. 2010; Kumar et al. 2013) is a distributed hydrologic model that uses grid cells as a primary hydrologic unit and accounts for a variety of hydrologic processes including canopy interception, root-zone soil moisture, infiltration, evapotranspiration, and runoff generation, as well as river flows along the stream network (Thober et al. 2019). A unique feature of mHM is its novel multiscale parameter regionalization (MPR) scheme to account for the subgrid variability of basin physical properties that allows for the seamless predictions of water fluxes and storages at different spatial resolutions and ungauged locations (Rakovec et al. 2016; Samaniego et al. 2017). The key parts of the MPR scheme are (1) utilization of transfer functions to translate high-resolution spatial data into high-resolution model parameters; and (2) upscaling of high-resolution model parameters to the model spatial scale. For this study, mHM was applied to simulate the water balance only, but the model is capable of simulating land-surface temperature that is relevant for the energy balance calculations (Zink et al. 2018). It should be noted that two versions of mHM were setup independently by two different participating teams in this study. The first version is a locally calibrated setup leading to 46 optimal mHM setups, one for each of the 46 subwatersheds. The nearest-neighbor method was then used to derive estimates for the validation stations—this version will be called mHM-Waterloo in the following. The second setup, named mHM-UFZ, is the global version of mHM and will be explained briefly in the next section.

Models Calibrated for Entire Domain: Global Calibration

The third group of modeling approaches are those where models are calibrated for the entire domain, and hence provide one final model setup after calibration, allowing for a seamless derivation of streamflow time series at any point within the study domain. Almost all models were calibrated using using the complete set of 46 gauging stations regardless of the objective (low human impact versus most downstream gauges), except for two models (VIC and mHM-UFZ), which were calibrated once with only gauges of objective 1 and a second time with only gauges of objective 2, leading to two final model setups. A brief description of each model is provided below.
The globally calibrated version of the mHM (Samaniego et al. 2010; Kumar et al. 2013) is the mHM-UFZ, set up by UFZ Leipzig. The mHM-UFZ model is the same as the one used for the local calibration (see last paragraph in previous section), but is globally calibrated once for objective 1 stations and once for objective 2 stations. The setup also used different input datasets for a digital elevation map (DEM), soil, and landcover (Table 2) than the locally calibrated version (mHM-Waterloo).
Table 2. Geophysical datasets used to set up models, including their source and native resolution
Digital elevation model (DEM):
 HydroSHEDS3  in.90  m[1]     xxx         
 HydroSHEDS15  in.500  m[1]xx xx   x xxx    
 HydroSHEDS30  in.1  km[1]             xaxaxaxa
 Printed topo mapSimilar to HUC8  x              
 Global multiresolution terrain elevation data (GMTED; 2010)7.5  in.250  m[2]         x       
 USGS GTOPO30 (1996)1 km[3]             xbxbxb 
Soil database:
 FAO HWSD v1.230  in.1  km[4]        x xxx    
 GSDE30  in.1  km[5]             xxxx
 SoilGrids250 m[6]         x       
 SSURGO (US)1:12,000[7]      x          
 STATSGO2 (US)1:250,000[7]       x         
 SLC v3.2 (CA)1:1 million[8]      xx         
 MODIS MCD12q1 v6500 m[9]       x   x     
 NALCMS 2005250 m[10]            x    
 ESA-CCI LC 2015300 m[11]             xxxx
 ESA-CCI GlobCover 2005-06 v2.20.002778°300  m[12]         x       
 ESA-CCI GlobCover 2009 v2.30.002778°300  m[12]      x x x      
 USDA Croplayer database (CDL) 2010 (US)30 m[13]      x          
 Thickness of soil, regolith, and sedim. deposit layers30  in.1  km[14]          x      
 Groundwater table depth30  in.1  km[15]          x      
 Canadian national hydrology network (NHN)1:50,000 or better[16]             xcxcxc 
 National hydrography dataset of the United States (NHD)Up to 1:24,000[17]             xcxcxc 
 Global depth to bedrock250 m[18]               x 

Sources: [1] (HydroSHEDS 2021), [2] (USGS 2010), [3] (USGS 2018), [4] (FAO 2008), [5] (Shangguan et al. 2008), [6] (SoilGrids 2020), [7] (USDA, n.d.), [8] (Agriculture and Agri-Food Canada 2010), [9] (USGS 2019), [10] (CEC 2010), [11] (ESA 2017), [12] (ESA 2005), [13] (USDA 2021), [14] (ORNL and DAAC 2016), [15] (USC 2013), [16] (Natural Resources Canada 2020), [17] (USGS 2021), and [18] (Shangguan et al. 2017).

Note: The datasets might have been postprocessed before being used for individual models. These details can be found online in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see Data Availability Statement for URL). All models used the same meteorologic forcings (Table 3).

Dataset used for delineation and routing.
Dataset used for surface/soil slope computation.
Dataset used for computation of drainage density (km/km2).
The hydrological predictions for the environment (HYPE) model is an operational hydrologic model developed at the Swedish Meteorological and Hydrological Institute. HYPE includes hydrologic processes such as snow/ice accumulation and melt, evapotranspiration, soil moisture, frozen soil infiltration, groundwater movement and aquifer recharge, surface-water routing through rivers and lakes, and human perturbations through diversion, reservoirs, regulation, irrigation, and water abstractions (Lindström et al. 2010).
The variable infiltration vapacity (VIC) model is a macroscale distributed hydrologic model that balances both the water and surface energy budgets (Liang et al. 1994; Liang 2003). VIC simulates land surface-atmospheric fluxes of moisture and energy such as evapotranspiration, surface runoff, baseflow, radiative fluxes, turbulent fluxes of transport, and sensible heat within the grid-cell. The gridded runoff components, comprising surface runoff and baseflow, are then routed to the basin outlet. VIC was represented twice in this study—once in its native setup using grid-cells to discretize watersheds, and in a second, independent setup using the concept of grouped response units (GRUs) (Gharari et al. 2020). The model will hence be called VIC-GRU. VIC was calibrated twice—once with only objective 1 stations and once with only objective 2 stations—while VIC-GRU used all stations and provided only one final, calibrated setup.
The last four models described below (GEM-Hydro, MESH-SVS, MESH-CLASS, WATFLOOD) are closely related in that they all share the same preprocessed model input data and a similar basin segmentation approach.
GEM-Hydro is a physically based, distributed hydrologic model developed at Environment and Climate Change Canada (ECCC). It relies on GEM-Surf (Bernier et al. 2011) to represent five different surface tiles (glaciers, water, ice over water, urban, and land). The land tile is represented with the SVS (soil, vegetation, and snow) hydrologic land surface scheme (HLSS) (Alavi et al. 2016; Husain et al. 2016). GEM-Hydro also relies on WATROUTE (Kouwen 2010), a 1D hydraulic model, to perform 2D channel and reservoir routing. See Gaborit et al. (2017b) for more information on GEM-Hydro.
MESH (modélisation environnementale communautaire–surface and hydrology) is a complimentary community hydrologic modeling platform maintained by ECCC (Pietroniro et al. 2007). The MESH framework includes SVS among its HLSSs, as well as the Canadian LAnd Surface Scheme (CLASS) (Verseghy 2000), which is a physically based land surface scheme requiring several forcing data and simulates vertical energy and water fluxes for vegetation, soil, and snow. The two models are referred to as MESH-SVS and MESH-CLASS in this study. MESH uses a grid-based modeling system and accounts for subgrid heterogeneity using the GRU concept from WATFLOOD (Kouwen et al. 1993). GRUs aggregate subgrid areas by common attributes (e.g., soil and vegetation characteristics) and facilitate parameter transferability in space. Like GEM-Hydro, MESH also uses WATROUTE (Kouwen 2010) for channel and reservoir routing. MESH-SVS was used to calibrate GEM-Hydro: MESH-SVS was calibrated first and the SVS parameters were transferred to GEM-Hydro. MESH-CLASS participants inadvertently used two of the stations that are later used for validation during calibration.
The WATFLOOD model is a partially physically based, distributed hydrologic model (Kouwen 1988). The hydrologic processes modeled in WATFLOOD include, but are not limited to, interception, infiltration, evaporation, snow accumulation, interflow, recharge, baseflow, and overland and channel routing. The most important concept of WATFLOOD is the GRU approach, as described above for MESH. The runoff response from each unit with an individual GRU is calculated and routed downstream (Cranmer et al. 2001).

Meteorologic Forcing Dataset

One key point of this study is that all participating models had to use the same forcing dataset, here the Regional Deterministic Reanalysis System version 1 (RDRS-v1).
The RDRS dataset is a preliminary sample of an atmospheric reforecast and precipitation/ land-surface reanalysis dataset that has recently been developed and released by ECCC (Gasset and Fortin 2017; Gasset et al., forthcoming). The data had previously been provided to this project before its public release. The dataset was chosen because of its high spatial and temporal resolution, and the availability of all variables required to set up hydrologic and land-surface models. A full list of variables, including units and vertical level, can be found in Table 3. The table also contains the information on which model used which variable. The data are available in CaSPAr (CaSPAr 2017; Mai et al. 2020).
Table 3. Variables available in the reanalysis dataset, RDRS-v1
VariableAbbreviationLong nameUnitLevelUsed by
Precipitation ratePR0Quantity of precipitation(m)SFCAll models
Air temperatureTTAir temperature(°C)40 mAll models
Inc. shortwave rad.FBDownward solar flux(W/m2)SFCSWAT-EPA, SWAT-Guelph, VIC, VIC-GRU, GEM-Hydro, MESH-SVS, MESH-CLASS
Inc. longwave rad.FISurf. inc. infrared flux(W/m2)SFCVIC, VIC-GRU, GEM-Hydro, MESH-SVS, MESH-CLASS
Atmospheric pressureP0Surface pressure(mbar)SFCSWAT-EPA, VIC, VIC-GRU, GEM-Hydro, MESH-SVS, MESH-CLASS
Specific humidityHUSpecific humidity(kg/kg)40 mSWAT-EPA, SWAT-Guelph, VIC, VIC-GRU, GEM-Hydro, MESH-SVS, MESH-CLASS
Wind componentsUU, VVU/V-comp. of wind (along grid X/Y)(knots)40 mGEM-Hydro
Corr. wind componentsUUC, VVCU/V-comp. of wind (along W-E/S-N direction)(knots)40 mNo model
Wind speedUVCWind modulus(knots)40 mSWAT-EPA, SWAT-Guelph, VIC, VIC-GRU, MESH-SVS, MESH-CLASS
Wind directionWDCMeteorol. wind direction(degree)40 mNo model

Note: The forcings are either available at surface (SFC) or 40-m height. The average spatial resolution is 15 km, while the temporal resolution is 1 h. The data are available for 2010–2014 over North America. The table also specifies which model used which variable.

This dataset was obtained from short-term (6-h to 18-h lead time) mesoscale (15-km) integrations of the global environmental multiscale (GEM) atmospheric model coupled to the Canadian Land Data Assimilation System (CaLDAS) and to the Canadian Precipitation Analysis (CaPA), launched every 12 h from initial atmospheric conditions provided by the ERA-Interim reanalysis (Gasset et al., forthcoming). A technical report is available (Gasset et al. 2020).
The RDRS-v1 dataset covers North America with an approximate 15-km by 15-km grid resolution. The hourly dataset is available for January 2010 to December 2014. The entire dataset was used for calibration (2010 used for warm-up). No temporal validation was performed in this study due to the short period of available forcings; instead, a spatial validation was applied (see the section on streamflow gauging stations). The forcing dataset was preprocessed during the GRIP-E project by cropping the full dataset to the domain of the Lake Erie watershed [Fig. 1(c)]. The forcing data were postprocessed for the individual models—for example, some models required lumped forcings [Fig. 1(d)] or needed the data to be aggregated to another spatial or temporal resolution. The spatial and temporal resolutions of each model can be found in Table 1. Further details on forcing data processing, like unit conversions, can be found online in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see Data Availability Statement for URL).

Geophysical Datasets

Besides the meteorologic forcings, most model setups required additional geophysical datasets such as a DEM, soil, and landcover information. Although we tried to unify these datasets across all participating models, it was found infeasible and would have excluded too many models. Hence, in this study, the choice of geophysical datasets was made by the individual modelers. The datasets used are listed in Table 2, specifying which model used which dataset. Please note that some models used additional datasets besides DEM, soil, and landcover for other purposes, for example, to specify the subsurface. These datasets are listed under “Others” in the table. Additional information on postprocessing of these datasets, like aggregation to other spatial resolutions and merging of soil and landcover classes, are available online in the “Model_setups_GRIP.xlsx” on the GitHub associated with this publication (see Data Availability Statement for URL).

Model Performance Evaluation

The model performances are evaluated for the calibration period from 2011 to 2014, while 2010 was discarded as the model warm-up period. The NSE (Nash and Sutcliffe 1970) is defined by
where T = number of time steps; Qsim(t) and Qobs(t) = simulated and observed streamflow at time step t; and Qobs¯ = average observed streamflow over the simulation period. The NSE was used to compare the simulated discharge Qsim with the observed daily streamflow Qobs. The NSE was chosen based on a survey performed in November 2018 among the eight modeling groups participating at the time. Overall, 75% of the modelers voted for using NSE, 62.5% for percent bias (PBIAS), 37.5% for NSE of the logarithmic discharge, and 12.5% each for NSE of the square-root of discharge and root-mean-square error regarding discharge. Multiple votes were allowed during that poll. The PBIAS was used as a secondary metric. The analysis of PBIAS, however, did not yield any further insights and results will not be shown. The results of the PBIAS metric and several other metrics can be found in the Supplemental Materials (Figs. S1S5).
The median of these NSE values was chosen to determine the performance of a model across multiple gauging stations or the performance of a streamflow gauging station across several models. Furthermore, the ensemble of streamflow simulations was analyzed for selected streamflow gauging stations only—the stations with the worst and best median NSE across all models.
This leads to the following four types of analyses:
Analysis of performance per gauge and model for all stations of objectives 1 and 2 for both calibration and validation (Fig. 2; see Analysis of Model Performance per Streamflow Gauge and Model).
Analysis of performance per model across all gauging stations for both objectives in calibration and spatial validation (Fig. 3; see Analysis of Model Performance across Gauging Stations).
Analysis of performance per gauging station across all models for both objectives in calibration and spatial validation (Fig. 4; see Analysis of Performance per Gauging Station across All Models).
Analysis of simulated streamflow ensembles for the best and worst station of objective 1 for both calibration and validation stations (Fig. 5; see Analysis of Simulated Streamflow Ensembles).
Fig. 2. Performance of the participating models in calibration and validation (a, b and c, d, respectively) for each gauging station of objectives 1 and 2. The colored tiles indicated the NSE per gauge and model, while the median NSE over all gauging stations is displayed to the right. The black horizontal lines separate (1) Machine Learning models from (2) models that are calibrated at each individual streamflow gauge from (3) models that are calibrated over the entire domain calibrating all streamflow gauges simultaneously. The hatched tiles (validation only) mark gauging stations that have informed the calibration of the corresponding models.
Fig. 3. The median model performance measured using the NSE of streamflow of the Machine Learning models (grey), models using individual basin calibration (red), and models calibrated for the whole domain (blue) for (a) calibration stations; and (b) validation stations. The light-colored bars show results of objective 1, while the dark-colored bars show objective 2 results. The median values are added on top of the bars for reference. Hatched bars indicate that some validation stations might have been used in calibration previously, and hence the validation results are biased. The models that show different values for objective 1 and objective 2 (SWAT-Guelph, mHM-UFZ, and VIC) are the models that provided an optimal model setup for each of the objectives. All other models provided only one final model setup (independent of the objective). The results shown are the median NSE values of the gauge-wise results shown in Fig. 2.
Fig. 4. Performance of the model ensemble per gauge for: (a) all models participating (black boxplots); (b) only the data-driven Machine Learning models (grey boxplots); (c) models that are calibrated at each individual gauge (blue boxplots); and (d) models that are calibrated globally (red boxplots). The horizontal line at the center of each box indicates the median Nash–Sutcliffe performance of the simulated streamflow, while the height of the box is determined by the 25th and 75th percentiles, and the whiskers indicate the 5th and 95th percentiles. No whiskers are shown for the Machine Learning models because there are only two such models. The results are shown for each gauging station (x-axis) for calibration stations of objective 1 (low human impact watersheds) and objective 2 (most downstream gauges) and the stations used for spatial validation of both objectives. The gauges in each of the four categories (calibration/validation and objective 1/objective 2) are sorted according to their decreasing median performance for all models (horizontal lines of each box in panel A).
Fig. 5. Streamflow ensemble generated by the three groups of models: Machine Learning models (grey); models that are calibrated for each basin individually (local calibration; red); and models that are calibrated for entire domain (global calibration; blue). The observed streamflow is displayed with black dots in each plot. Results are shown for: (a) best-performing; (b) worst-performing gauging station in calibration; (c) best-performing; and (d) worst-performing station in validation for one example year (2011) out of the entire period (2011–2014). The stations were chosen regarding their overall median NSE (see Fig. 4). All results are regarding calibrations for objective 1 (low human impact watersheds). The median NSE(QG)¯ for each model group G, as well as the NSE of the ensemble mean simulated discharge NSE(QG¯) of each group G, are added as a label to each panel. The NSE values are derived for the period from 2011–2014.

Results and Discussion

This section will present and discuss the results of the four types of analyses (A–D) mentioned above.

Analysis of Model Performance per Streamflow Gauge and Model

First, the model performance at each of the 46 streamflow gauging stations and for each of the 17 models regarding NSE of the simulated streamflow was analyzed (Fig. 2). The summary statistics of median NSE over all gauges for the calibration and validation stations for each objective can be found in Table S2. The gauging stations in Fig. 2 are sorted using a hierarchical clustering such that stations of similar performance patterns across all models appear closer to each other than gauges that show a different pattern. Each of the four panels in the figure is divided by horizontal lines into three blocks separating the two Machine Learning models in the first block from the seven locally calibrated models in the second block and the eight globally calibrated models in the third block.
As expected, the locally calibrated models (second block) in general yield better results than globally calibrated models (third block) in the calibration model [Figs. 2(a and b)]. Most locally calibrated models, however, perform surprisingly well in validation [Figs. 2(c and d)]. It is also surprising that no significant difference between objectives 1 and 2 can be seen. Most models perform equally well in both objectives (see median NSE for each model added as labels right of each panel). The reason for this is that the stations for objective 1 (low human impact watersheds) are chosen purely based on the regulation type as “natural” and “reference” provided by WSC and USGS. The classification, however, is constant in time, and a watershed might have been of no human impact in the past but is no longer (or vice versa). In hindsight, the stations initially selected as low human impact should have been manually double-checked to ensure that they are indeed not affected by catchment management.
Following the definition of an at least satisfactory performance regarding streamflow of an NSE of 0.5 or higher (Moriasi et al. 2015), the only models with a (median) satisfactory performance in all four setups (panel A-D) are the GR4J-Raven-lp, HYMOD2-DS, mHM-Waterloo, and mHM-UFZ. Satisfactory in both calibration but not in both validation setups (panel A-B) are ML-LSTM, GR4J-Raven-sd, and SWAT-Guelph. LBRM is satisfactory in both calibration setups as well; the validation results are not considered here because some information of the validation stations might have informed calibration already (due to the operational setup of LBRM). The likely reason for the superior performance of these models in validation is that the validation stations were selected after a visual inspection of hydrographs and drainage area to make sure they were not heavily managed and not located in highly urbanized areas. Satisfactory in both validation scenarios but not in both calibration scenarios (panel C-D) are VIC, VIC-GRU, GEM-Hydro, and MESH-SVS. LBRM and MESH-CLASS are not considered for validation because they both used validation stations for calibration.
The machine learning model ML-XGBoost is the only model that performed substantially better for objective 1 (calibration) than for objective 2 (ΔNSE=0.10). All other models have very similar median NSEs (in both calibration and validation). However, the second machine learning model, ML-LSTM, performed much better than ML-XGBoost. It has been shown before that ML-XGBoost does not perform well when insufficient training data are available (Gauch et al. 2019). The data-driven ML-LSTM model serves here as a baseline for all hydrologic models, as it can show how much information content is provided in the data and the performance that can be achieved without hydrologic knowledge. Notably, both data-driven models perform equally well (or poorly) in both objectives in calibration (NSE of 0.79 versus 0.79 for ML-LSTM, and NSE of 0.36 versus 0.26 for ML-XGBoost). Even the stations that did not perform well for the globally calibrated models—last six in Fig. 2(a) and first five in Fig. 2(b)—and were deemed likely to be managed did not show decreased performance compared with other stations for the ML models, even though no information on water management policies were used. It may be possible to augment hydrologic models with machine learning estimates to improve the simulations in basins like 04166100 and 02GC007, where almost all globally calibrated models fail to achieve NSEs above 0.
mHM-Waterloo is practically as good as the ML-LSTM, showing that most information contained in the forcing and geophysical data can be extracted by the model. HYMOD2-DS and LBRM are ranked second and third in the locally calibrated group. mHM-Waterloo and mHM-UFZ significantly outperform other models in both groups (local and global calibration, respectively). Reasons for mHM’s performance might include its unique multiscale parameter regionalization (Samaniego et al. 2010) approach using geophysical data at their native resolution and relating them directly to hydrologic variables without losing the subgrid variability. Another reason is the internal model structure of mHM, which maintains a prescribed nonlinear relationship among internal model variables (Rakovec et al. 2019) being achieved by implementations of the transfer functions of each mHM parameter for most of the processes and elimination of unnecessary parameter interactions. mHM-UFZ significantly outperforms other globally calibrated models in calibration. It is hard to assign further ranks as three other globally calibrated models—HYPE, GEM-Hydro, and MESH-SVS—perform very similarly in calibration. The results in validation are closer together, but mHM-UFZ is still the best and MESH-SVS is ranked second.
mHM-UFZ, like other globally calibrated models, had problems in performed well for a few stations (i.e., 04166100, 02GA047, 02GB007, 04161820, 0416400, 04165500, 02GC007, 04174500, and 04166500). These stations have been identified to be located in highly urbanized areas such as metropolitan Detroit, which corresponds to fact that models were not a priori informed about any human influence and regulation. Several models, like the land-surface scheme SVS used by both GEM-Hydro and MESH-SVS, as well as WATFLOOD, are known to have problems with flashy responses because tile drainage is not modeled in these models. GEM-Hydro and MESH-SVS perform almost equally in both objectives in calibration and validation, certainly because they both use exactly the same underlying land-surface scheme, SVS. Furthermore, the calibrated SVS parameters of MESH-SVS were directly used for GEM-Hydro without further calibration. MESH-CLASS, which uses the CLASS land-surface scheme, does not perform as well as GEM-Hydro and MESH-SVS; this might be due to a different calibration strategy or differences in the land-surface schemes.
For the GR4J model, no major improvements can be observed when switching from a lumped setup (GR4J-Raven-lp) to a semidistributed model setup (GR4J-Raven-sd), which might be due to either the fact that the discretization of the semidistributed version was not detailed enough or the maximum performance of GR4J is already reached when using the lumped version, and an improvement could only be achieved when using additional data such as watershed management rules.
The traditional VIC model, based on regular grid cells with defined tiles, and VIC-GRU show similar performance. The main differences between the tiles and GRUs is that the latter take into account soil classes in their native resolution while the tiles only use the major soil class per grid cell. This, however, does not make much difference in the Lake Erie watershed because the soil classes do not exhibit high spatial heterogeneity. Hence, the VIC model uses about 1,390 tiles (381 grid cells each with 3–4 vegetation tiles) and VIC-GRU uses about 2,400 grouped response units. Some stations are better for one or the other model, but the overall performance is similar. The fact that VIC/VIC-GRU reaches an upper limit of streamflow performance at a certain discretization level was previously described by Gharari et al. (2020). The differences in performance between the models are likely due to different input datasets used, different routing models, and/or different calibration strategies.
SWAT-EPA provided only results for the calibration of objective 1 stations, but yielded significantly worse performance than any other model, and particularly worse than SWAT-Guelph, which was set up by an independent group. The weak performance of SWAT-EPA is either due to calibration strategy or the datasets used. This shows that model intercomparisons need to take into account modelers’ expertise and perseverance in addition to the traditionally considered influence of datasets used, calibration strategies, model discretization, etc.
The performance for all models at the seven validation streamflow gauging stations is displayed in Figs. 2(c and d). In validation, the Machine Learning models show significantly degraded performance relative to calibration, and both hydrologic model groups (locally and globally calibrated) were found to perform better than ML models. This is most likely because there were not enough data (e.g., streamflow gauge data, forcing data, and basin attributes) to train ML models properly, as previously discussed by Gauch et al. (2019). The best model in validation is LBRM, which cannot be considered because it had already used all stations for calibration. Hence, the two versions of mHM (mHM-Waterloo and mHM-UFZ) are ranked first in the local and global model groups, respectively. HYMOD2-DS and MESH-SVS are ranked second in the two groups, respectively.
It should be noted that the locally calibrated models (second group) use either the area-ratio method (Fry et al. 2014) (LBRM and SWAT-Guelph) or the nearest-neighbor method to determine streamflow at the validation stations. The donor basins used to derive those estimates might differ between the models. The list of donor basins used for each validation station can be found in the README files online (e.g., “data/objective_1/lake-erie/validation/model/HYMOD2-DS/README.md” on the on the GitHub associated with this publication).

Analysis of Model Performance across Gauging Stations

Fig. 3 shows the median NSE per model across all gauges in objective 1 and objective 2 in calibration [Fig. 3(a)] and validation [Fig. 3(b)], mostly to ease comparison between calibration and validation results (panel A versus panel B) and differences between the two objectives for each model (light versus dark-colored bar per model). A few models report different values for objective 1 and objective 2 in validation (i.e., SWAT-Guelph, mHM-UFZ, and VIC), because they provided an optimal model setup for each of the two objectives. All other models provided only one final model setup (independent of the objective), and hence only provide one modeled streamflow time series for each gauge.
The Machine Learning models show a significant drop in performance between calibration and validation (ΔNSE0.38 for ML-LSTM) caused by the limited training data available. This could be resolved by pretraining the ML models with a larger dataset, for example, CAMELS (Newman et al. 2015; Addor et al. 2017) and then fine-tune with the datasets available for the study domain of Lake Erie. This would partly resolve the imbalance between hydrologic models developed based on expert knowledge over many years or even decades and Machine Learning models only being trained on the current data without benefiting from any form of expert knowledge.
As for the locally calibrated models (red bars), SWAT-Guelph performance also significantly drops (ΔNSE0.29 for objective 1 and 0.36 for objective 2) due to known weak transferability of parameters in SWAT (Heuvelmans et al. 2004). Another reason for the drop in performance might be the usage of the area-ratio method to obtain the estimates at the validation stations, while all other models (except LBRM) used a nearest-neighbor method. The lumped and semidistributed GR4J setups, GR4J-Raven-lp and GR4J-Raven-sd, as well as HYMOD2-DS, decrease in performance but not as much as the ML models (ΔNSE0.15, ΔNSE0.22, and ΔNSE0.14, respectively); mHM-UFZ maintains almost the same performance in validation as it has in calibration (ΔNSE0.11). Almost all globally calibrated models maintain or, surprisingly, even improve performance in validation. This probably a side effect of the much smaller sample size (7 stations versus 28 and 31 in calibration); but, more importantly, it is certainly caused by the large set of urban watersheds in the calibration set for which all global models had problems to obtain good results. Such gauges were avoided in the set of validation stations chosen after we observed that the classification of WSC/USGS needs manual verification. mHM-UFZ maintains the same performance (ΔNSE0.05), HYPE decreases slightly (ΔNSE0.09); VIC and VIC-GRU show slightly improved performance (ΔNSE0.10 and 0.08) as do GEM-Hydro, MESH-SVS, and MESH-CLASS (ΔNSE0.06, 0.11, and 0.14, respectively). MESH-CLASS, however, is slightly biased, as it already used two of the validation stations for calibration, and thus validation results might appear better than they actually are. WATFLOOD is the only global model that showed drastically decreased performance in validation (ΔNSE0.28), which may indicate a flawed validation setup given that WATFLOOD was developed using catchments in the Lake Erie basin (Kouwen et al. 1993), and thus has shown much more robust performance in this region in the past.
In addition, the results in Fig. 3 again highlight that only minor differences exist between the performance of the models for objective 1 and objective 2 stations originally defined as low human impact and most downstream stations, respectively. This is most likely due to the fact that the assignment of low human impact was mainly based on the tags indicated by WSC and USGS in their gauge information. We see, however, that there are several stations in objective 1 (i.e., 04166100, 02GA047, 02GB007, 04161820, 0416400, and 04165500) where all models had problems in achieving good results, even in calibration, due to their location within highly urbanized areas. These stations, therefore, should not have been classified as objective 1 (although labeled as “natural” by WSC and “reference” by USGS). These stations lowered the performance of objective 1 and led to similar results for both objectives. The validation stations were selected later in the project with more care, making sure they are not located in urban areas. We also visually inspected the observed streamflow to make sure there was no obvious human influence/management in the selected gauges. The void of human-impacted watersheds in validation explains why performance improved in so many models.

Analysis of Performance per Gauging Station across All Models

Fig. 4 shows the variability of the streamflow simulation performance for each gauging station over sets of models. Panel A considers all models, while the other three panels separate the models into the categories of machine learning (ML) models (panel B), locally calibrated models (panel C), and globally calibrated models (panel D). The gauges (x-axis) are sorted according to decreasing median NSEs over all models (horizontal line in each box of panel A).
The calibration results show that the gauges with the worst performance have the highest variability regarding the streamflow simulation performance, with only a few exceptions (see panel A). The high variability in performance for calibration stations is due to the high variability of performance of globally calibrated models (panel D), while ML and locally calibrated models (panels B and C, respectively) result in much less variability and, in general, better results for those stations. The stations with greater variability are the stations mentioned above (see the subsections above: Analysis of Model Performance per Streamflow Gauge and Model; and Analysis of Model Performance across Gauging Stations) as being the ones in highly urbanized areas where all the global models, except mHM-UFZ, HYPE, and VIC-GRU, have difficulties in simulat\ing streamflow. All of the above holds for both objectives in calibration mode.
The picture changes when it comes to the performance of the validation stations. Most of the overall variability (panel A) is caused by ML models (panel B) and the locally calibrated models (panel C), which all used either the area-ratio or nearest-neighbor method to transfer parameters of various donor basins to the stations used for validation. The variability of the ML models is a less reliable predictor compared wih the results for the locally calibrated models, as it is determined based on only two ML models, while the boxplots for the locally calibrated models represent six models (mostly five, because LBRM should not really be counted as it used all validation stations for calibration). This again shows that the globally calibrated models are superior in validation due to their less subjective approach to model ungauged basins; however, they need overall improvement when it comes to representing urban areas.
The best-performing station across all models in calibration mode of objective 1 is 02GC010 (median NSE=0.69); the station with lowest performance is 04166100 (median NSE=0.29). The best-performing station across all models in validation for objective 1 is 04208000 (median NSE=0.63), while the worst-performing one is 04167000 (median NSE=0.38). The simulated streamflow time series of these four stations is analyzed in the next section.

Analysis of Simulated Streamflow Ensembles

In Fig. 5, streamflow ensembles for three groups of models (ML, locally calibrated models, and globally calibrated models) are shown for selected gauging stations in calibration and validation mode only for objective 1 (objective 2 results are similar but not shown). The best and worst objective 1 stations in calibration and validation are used here. The performance is regarding the overall highest and lowest median NSE across all models [Fig. 4(a)].
The ML ensemble consists of only two models (grey hydrograph plots). The two simulated hydrographs in calibration mode [Figs. 5(a and b)] look very realistic—low flows are well represented and some peak flows are missed but most are captured. For the worst station in the calibration set for objective 1 [04166100; Fig. 5(b)], one ML model seems to overestimate the flows consistently, possibly because this is a station with human influence. No data are provided to the ML models to train them regarding human impacts and management, and it is hence expected that these stations are not very well represented with data-driven models (or any other globally calibrated model).
The ensemble of streamflow time series for locally and globally calibrated models (red and blue hydrographs, respectively) look very similar for well-performing stations in both calibration and validation [Figs. 5(a and c)]. This, however, changes for the worst-performing station: The variance in the simulated hydrographs in calibration mode [blue panel in Fig. 5(b)] is much larger for globally calibrated models, while the ensemble of the locally calibrated models looks, expectedly, very consistent. The low flows are well represented, but some peak flows are missed by locally calibrated models [red panel Fig. 5(b)]. This gets surprisingly better for the validation of the overall worst-performing station [blue panel Fig. 5(d)], possibly because these stations are not in urban areas, which are the stations where almost all globally calibrated models had problems already in calibration (namely GEM-Hydro, MESH-SVS, MESH-CLASS, and WATFLOOD, but also VIC and VIC-GRU).
Rather than evaluating the performance of each individual model using the median NSE [added as label NSE(QG)¯ for each group G(ML,SC,GC) to panels in Fig. 5], the model intercomparison now also allows to obtain the performance of the model ensemble. Therefore, the mean ensemble streamflow timeseries QG¯ for each model group G is derived and compared to the observations [added as label NSE(QG¯) to panels in Fig. 5]. For all model groups and both stations, this leads to large improvements in performance, highlighting the strength of using model ensembles rather than individual models, as reported by others (Duan et al. 2007; Muhammad et al. 2018; Darbandsari and Coulibaly 2019).


Our extensive model intercomparison compares the performance of 17 models, with 14 independent modeling teams building and calibrating these models, for predicting streamflows in the Lake Erie drainage basin. This model intercomparison is archived for future modelers to assess their model performance against the original 17 models included in our study.
The mHM model in its local and global setups (mHM-Waterloo and mHM-UFZ, respectively) were found to produce superior quality hydrographs regarding NSE performance when compared with all other models. For example, when compared with machine learning benchmarks, both mHM setups and the ML-LSTM model produce practically the same quality results for calibration stations, but both mHM setups produce superior quality hydrographs for validation stations. Please note that this finding is highly dependent on the design used in this study. Other studies (e.g., Kratzert et al. 2019) have shown that the mHM model is outperformed by LSTMs when a large-sample dataset is used for training.
Compared with the 13 traditional hydrologic models (excluding the two ML models and the two mHM setups) mHM, outperforms all of them. This is noteworthy because the models to which mHM is compared are all developed and calibrated by multiple, typically independent teams; thus, in addition to the variation in model type, the model-building strategies also varied. In addition, unlike mHM, five of these traditional models (LBRM, GEM-Hydro, MESH-SVS, MESH-CLASS, and WATFLOOD) were first coded and developed for application in Canada (or the Great Lakes basin in general). This finding could be due to mHM’s unique multiscale parameter regionalization (MPR) scheme to account for the subgrid variability of basin physical properties that allows for the seamless predictions of water fluxes and storages at different spatial resolutions and ungauged locations.
Other models with globally calibrated setups performed reasonably well, except possibly HYPE and WATFLOOD, which showed notably lower validation performance levels in comparison with the other globally calibrated models. The VIC, VIC-GRU, GEM-Hydro, MESH-SVS, and MESH-CLASS models all showed similar validation performance levels that were all improved relative to calibration performance levels (note that mHM-UFZ showed a minor decrease in validation performance relative to calibration performance). In contrast, all five locally calibrated models that were validated had degraded validation performance relative to calibration performance. Despite this degradation, two locally calibrated models (HYMOD2-DS and mHM-Waterloo) were still notably better in validation than all globally calibrated models except mHM-UFZ.
Locally calibrated models turn out to be surprisingly powerful in validation especially if parameter sets are transferred wisely—that is, if donor basins are selected that are not necessarily only closest in proximity but also share similar soil and landcover properties. mHM-Waterloo (locally calibrated) turns out to be the best model in the entire study. Both locally calibrated SWAT models perform notably poorly relative to the other five models in the locally calibrated model category.
Many models had problems simulating accurate streamflows in watersheds containing highly urbanized areas or other human impacts such as tile drainage or reservoir operations. The intent was to show this with objective 1 versus objective 2, which turned out to be an imperfect assessment because we initially used only the USGS and WSC flags on natural and managed operations of watersheds. Ultimately, however, we found that stations referred to as “natural/reference” can be highly impacted by human actions, and these impacts are not accounted for in the models. The USGS/WSC flags have the disadvantage of being constant in time for each gauge, making it impossible to account for management or urban development that might have changed over the course of the operational years of a gauge. One solution would be to use the Canadian Dam Inventory, which provides the initiation dates of each regulated location, and use it to classify gauging stations as either regulated or natural. We also recommend manual screening of gauging stations and visual inspection of hydrographs to identify low human impact watersheds. This was done here for the stations used for spatial validation, but unfortunately not for the calibration stations, which led to indistinguishable results in calibration mode for objectives 1 and 2.

Limitations and Future Work

The work presented here lays the groundwork for a unified model intercomparison for multinational teams. There are, however, several limitations associated with this study:
A short period of available forcings (2010–2014) prevented an analysis of model performance of different climatic conditions (e.g., wet versus dry periods) and a temporal model validation. The study presented here performed a spatial model validation only.
The comparison of simulated streamflow only does not provide a detailed insight into the performance of (especially) distributed models. It is not clear if models with good streamflow performance sacrifice the quality of other simulated variables.
The geophysical datasets utilized were not all consistent; that is, each modeling team was allowed to use the DEM, soil, and landcover information of their choice. This can lead to differences in model performance that cannot be attributed to an actual difference in the models but solely to the quality of the information used in setting up the model.
The main limitation is the short study period of only 5 years for which high-resolution forcing data suitable for driving land-surface hydrologic models are available. One of those years was reserved as warm-up period for each model, leading to only 4 years to train the models and leaving no data for temporal validation. It would be beneficial to use a longer forcing dataset that provides all meteorologic inputs for this region at the same spatiotemporal scale and is available for a longer time period, such that the calibration period could be longer and some data would be still available for temporal validation. A suitable dataset like this was not available during the course of this project. We believe that the conclusions reached in this work are significant regarding (1) weak model performances in urban areas, (2) the major benefit of using model ensembles, and (3) the impact of the modeler’s skill on model performance, and that these findings will likely not change even if studied for a longer period. Model performances themselves however are likely to be impacted by a longer and more climatically diverse study period.
It would further be interesting to see if differences in model performance persist if the same geophysical datasets and routing are used across all models, making sure that differences are not due to different input data and their resampling to match the requirements of the respective model. Consistent model setups have been already used for the model family of GEM-Hydro, MESH-SVS, MESH-CLASS, and WATFLOOD, leading to reliable insights that can be exclusively pointed toward model parameterization and conceptualization rather than differences in used geophysical and forcing data. Our study provides motivation for more detailed model diagnosis to investigate why and where some models are outperforming others.
The above-listed limitations have been taken into account for the future GRIP project over the entire Great Lakes (GRIP-GL), which has just ramped up as our GRIP-E work has wrapped up. In GRIP-GL, all these issues are addressed and resolved. GRIP-GL will cover the entire Great Lakes watershed including the Ottawa River. In addition, GRIP-GL will utilize a much longer high-resolution meteorologic input dataset, soon to be released, provided by Environment and Climate Change Canada. The future project will refine the comparison to require models to use consistent geophysical datasets and evaluate model predictive quality against multiple measured response variables beyond streamflow. GRIP-GL will be designed to determine exactly why the mHM model has done so well relative to other models in GRIP-E, and will yield more robust findings with regard to model performance rankings. The larger-scale GRIP-GL study simply could not have been designed or conceived as it has been, nor motivate the modeling teams to participate, without this GRIP-E study preceding it.

Supplemental Materials

File (supplemental_materials_he.1943-5584.0002097_mai.pdf)

Data Availability Statement

The subwatershed shapes are available at https://doi.org/10.5281/zenodo.3888690 (Shen et al. 2020). The forcing data (RDRS-v1) are available on CaSPAr (www.caspar-data.ca). Gridded model outputs for GEM-Hydro are available at https://doi.org/10.5281/zenodo.3890487 (Gaborit et al. 2020), while gridded model outputs for mHM-UFZ are available at https://doi.org/10.5281/zenodo.3886551 (Rakovec et al. 2020). Further information and documentation are available in the Wiki of the project GitHub https://github.com/julemai/GRIP-E/wiki. This GitHub also contains the simulated streamflow of all models for all gauges in calibration and validation model, and all scripts used to prepare the figures presented here are available.


This research was undertaken thanks primarily to funding from the Canada First Research Excellence Fund provided to the Global Water Futures (GWF) Project and the Integrated Modeling Program for Canada (IMPC). The modeling teams for mHM-Waterloo and mHM-UFZ received funding from the Initiative and Networking Fund of the Helmholtz Association through the project Advanced Earth System Modelling Capacity (ESM) (www.esm-project.net). The work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET; www.sharcnet.ca) and Compute/Calcul Canada. The availability of codes, data, and results is summarized in the Data Availability Statement. Although this manuscript has been reviewed and approved for publication by the USEPA, the views expressed in this manuscript are those of the authors and do not necessarily represent the views or policies of USEPA. We thank Drs. Brent Johnson and Heather Golden from USEPA–Office of Research and Development, as well as the three anonymous reviewers for their review and valuable comments. This is NOAA Great Lakes Environmental publication number 1975.


Addor, N., A. J. Newman, N. Mizukami, and M. P. Clark. 2017. “The CAMELS data set: Catchment attributes and meteorology for large-sample studies.” Hydrol. Earth Syst. Sci. 21 (10): 5293–5313. https://doi.org/10.5194/hess-21-5293-2017.
Agriculture and Agri-Food Canada. 2010. “Soil landscapes of Canada version 3.2.” Accessed March 3, 2021. http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html.
Alavi, N., S. Bélair, V. Fortin, S. Zhang, S. Z. Husain, M. L. Carrera, and M. Abrahamowicz. 2016. “Warm season evaluation of soil moisture prediction in the soil, vegetation, and snow (SVS) scheme.” J. Hydrometeorol. 17 (8): 2315–2332. https://doi.org/10.1175/JHM-D-15-0189.1.
Arnold, J. G., P. M. Allen, and G. Bernhardt. 1993. “A comprehensive surface-groundwater flow model.” J. Hydrol. 142 (1–4): 47–69. https://doi.org/10.1016/0022-1694(93)90004-S.
Bernier, N. B., S. Bélair, B. Bilodeau, and L. Tong. 2011. “Near-surface and land surface forecast system of the Vancouver 2010 winter Olympic and Paralympic games.” J. Hydrometeorol. 12 (4): 508–530. https://doi.org/10.1175/2011JHM1250.1.
Best, M. J., et al. 2015. “The plumbing of land surface models: Benchmarking model performance.” J. Hydrometeorol. 16 (3): 1425–1442. https://doi.org/10.1175/JHM-D-14-0158.1.
Boyle, D. P., H. V. Gupta, and S. Sorooshian. 2000. “Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods.” Water Resour. Res. 36 (12): 3663–3674. https://doi.org/10.1029/2000WR900207.
Burnash, R., R. Ferral, R. McGuire, and R. McGuire. 1973. A generalized stream flow simulation system. Conceptual modeling for digital computer. Washington, DC: US Department of Commerce.
Burnash, R. J. C., and V. Singh. 1995. “The NWS River forecast system—Catchment modeling.” In Computer models of watershed hydrology. Englewood, CO: Water Resources Publications.
CaSPAr. 2017. “The Canadian surface prediction archive.” Accessed March 3, 2021. www.caspar-data.ca.
CEC (Commission for Environmental Cooperation). 2010. “Land cover, 2005 (modis, 250m).” Accessed March 3, 2021. http://www.cec.org/north-american-environmental-atlas/land-cover-2005-modis-250m/.
Chen, T., and C. Guestrin. 2016. “XGBoost: A scalable tree boosting system.” In Proc., 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, 785–794. New York: Association for Computing Machinery.
Craig, J. R., et al. 2020. “Flexible watershed simulation with the Raven hydrological modelling framework.” Environ. Modell. Software 129 (Jul): 104728. https://doi.org/10.1016/j.envsoft.2020.104728.
Cranmer, A., N. Kouwen, and S.-F. Mousavi. 2001. “Proving watflood: Modelling the nonlinearities of hydrologic response to storm intensities.” Can. J. Civ. Eng. 28 (5): 837–855. https://doi.org/10.1139/l01-049.
Croley, T. E., II. 1983. “Great lake basins (U.S.A.-Canada) runoff modeling.” J. Hydrol. 64 (1): 135–158. https://doi.org/10.1016/0022-1694(83)90065-3.
Cuntz, M., J. Mai, L. Samaniego, M. P. Clark, V. Wulfmeyer, O. Branch, S. Attinger, and S. Thober. 2016. “The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model.” J. Geophys. Res. Atmos. 121 (8): 1–25. https://doi.org/10.1002/2016JD025097.
Darbandsari, P., and P. Coulibaly. 2019. “Inter-comparison of different Bayesian model averaging modifications in streamflow simulation.” Water 11 (8): 1707–1727. https://doi.org/10.3390/w11081707.
de Boer-Euser, T., et al. 2017. “Looking beyond general metrics for model comparison—Lessons from an international model intercomparison study.” Hydrol. Earth Syst. Sci. 21 (1): 423–440. https://doi.org/10.5194/hess-21-423-2017.
Dolan, D. M., and K. P. McGunagle. 2005. “Lake Erie total phosphorus loading analysis and update: 1996–2002.” Supplement, J. Great Lakes Res. 31 (S2): 11–22. https://doi.org/10.1016/S0380-1330(05)70301-4.
Duan, Q., et al. 2006. “Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops.” J. Hydrol. 320 (1–2): 3–17. https://doi.org/10.1016/j.jhydrol.2005.07.031.
Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian. 2007. “Multi-model ensemble hydrologic prediction using Bayesian model averaging.” Adv. Water Resour. 30 (5): 1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014.
ESA (European Space Agency). 2005. “Globcover.” Accessed March 3, 2021. http://due.esrin.esa.int/page_globcover.php.
ESA (European Space Agency). 2017. “Land cover CCI climate research data package (CRDP).” Accessed March 3, 2021. http://maps.elie.ucl.ac.be/CCI/viewer/download.php.
Evin, G., M. Thyer, and D. Kavetski. 2014. “Comparison of joint versus postprocessor approaches for hydrological uncertainty estimation accounting for error autocorrelation and heteroscedasticity.” Water Resour. Res. 50 (3): 2350–2375. https://doi.org/10.1002/2013WR014185.
FAO (Food and Agriculture Organization). 2008. “Fao soils portal—Harmonized world soil database v 1.2.” Accessed March 3, 2021. http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/.
Friedl, M., and D. Sulla-Menashe. 2019. “MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 global 500m SIN Grid V006.” Accessed August 1, 2020. https://lpdaac.usgs.gov/products/mcd12q1v006/.
Frieler, K., et al. 2017. “Assessing the impacts of 1.5°C global warming—Simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b).” Geosci. Model Dev. 10 (12): 4321–4345. https://doi.org/10.5194/gmd-10-4321-2017.
Fry, L. M., et al. 2014. “The Great Lakes runoff intercomparison project phase 1: Lake Michigan (GRIP-M).” J. Hydrol. 519: 3448–3465. https://doi.org/10.1016/j.jhydrol.2014.07.021.
Gaborit, E., D. G. Princz, V. Fortin, D. Durnford, and J. Mai. 2020. “GEM-hydro gridded simulations for the Great Lakes runoff inter-comparison project for Lake Erie (GRIP-E).” Accessed March 19, 2021. https://doi.org/10.5281/zenodo.3890487.
Gaborit, É., V. Fortin, B. Tolson, L. Fry, T. Hunter, and A. D. Gronewold. 2017a. “Great Lakes runoff inter-comparison project, phase 2: Lake Ontario (GRIP-O).” J. Great Lakes Res. 43 (2): 217–227. https://doi.org/10.1016/j.jglr.2016.10.004.
Gaborit, É., V. Fortin, X. Xu, F. Seglenieks, B. Tolson, L. M. Fry, T. Hunter, F. Anctil, and A. D. Gronewold. 2017b. “A hydrological prediction system based on the SVS land-surface scheme: Efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin.” Hydrol. Earth Syst. Sci. 21 (9): 4825–4839. https://doi.org/10.5194/hess-21-4825-2017.
Gasset, N., et al. Forthcoming “A 10 km North American precipitation and land surface reanalysis based on the GEM atmospheric model.” Hydrol. Earth Syst. Sci. Discuss. https://doi.org/10.5194/hess-2021-41.
Gasset, N., L. Benyahya, M. Dimitrijevic, G. Roy, and V. Fortin. 2020. Evaluation of a capa reanalysis over North America and Canada on summer & winter 2010–2014.” Accessed March 3, 2021. https://collaboration.cmc.ec.gc.ca/science/outgoing/capa.grib/hindcast/capa_hindcast_rdrs_v1/Evaluation_CaPA_Reanalysis_North_America_2010-2014.pdf.
Gasset, N., and V. Fortin. 2017. “Toward a 35-years North American precipitation and surface reanalysis.” In Proc., American Geoscientist Union Falls Meeting. New Orleans: American Geophysical Union.
Gauch, M., J. Mai, and J. Lin. 2019. “The proper care and feeding of CAMELS: How limited training data affects streamflow prediction.” Environ. Modell. Software 135: 104926. https://doi.org/10.1016/j.envsoft.2020.104926.
Gharari, S., M. P. Clark, N. Mizukami, W. J. M. Knoben, J. S. Wong, and A. Pietroniro. 2020. “Flexible vector-based spatial configurations in land models.” Hydrol. Earth Syst. Sci. Discuss. 24 (2): 5953–5971. https://doi.org/10.5194/hess-24-5953-2020.
GLAHF (Great Lakes Aquatic Habitat Framework). 2016. “Great Lakes aquatic habitat framework.” Accessed March 3, 2021. https://www.glahf.org.
Gronewold, A. D., T. Hunter, J. Allison, L. M. Fry, K. A. Kompoltowicz, R. A. Bolinger, and L. Pei. 2017. “Project documentation Report for Great Lakes seasonal and inter-annual water supply forecasting improvements project phase I: Research and development.” Accessed March 19, 2021. https://www.glerl.noaa.gov/pubs/fulltext/2018/20180020.pdf.
Haghnegahdar, A. 2015. “An improved framework for watershed discretization and model calibration: Application to the Great Lakes Basin.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of Waterloo.
Herman, J. D. 2012. “Time-varying sensitivity analysis reveals impacts of watershed model choice on the inference of dominant processes.” Ph.D. thesis, Pennsylvania State Univ., Graduate School.
Heuvelmans, G., B. Muys, and J. Feyen. 2004. “Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium.” Hydrol. Earth Syst. Sci. 8 (5): 931–939. https://doi.org/10.5194/hess-8-931-2004.
Ho, J. C., and A. M. Michalak. 2017. “Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading.” J. Great Lakes Res. 43 (3): 221–228. https://doi.org/10.1016/j.jglr.2017.04.001.
Hochreiter, S., and J. Schmidhuber. 1997. “Long short-term memory.” Neural Comput. 9 (8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
Huang, S., et al. 2017. “Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide.” Clim. Change 141 (3): 381–397. https://doi.org/10.1007/s10584-016-1841-8.
Husain, S. Z., N. Alavi, S. Bélair, M. Carrera, S. Zhang, V. Fortin, M. Abrahamowicz, and N. Gauthier. 2016. “The multibudget soil, vegetation, and snow (SVS) scheme for land surface parameterization: Offline warm season evaluation.” J. Hydrometeorol. 17 (8): 2293–2313. https://doi.org/10.1175/JHM-D-15-0228.1.
HydroSHEDS. 2021. “Hydrosheds website.” Accessed March 3, 2021. https://www.hydrosheds.org/.
IJC (International Joint Commission). 2019a. “Causes of the 2019 high water event.” Accessed March 3, 2021. https://ijc.org/en/loslrb/watershed/causes-2019-high-water-event.
IJC (International Joint Commission). 2019b. “Lake Ontario outflow sets records in 2019, further increases expected in new year.” Accessed March 3, 2021. https://www.ijc.org/en/loslrb/lake-ontario-outflow-sets-records-2019-further-increases-expected-new-year.
Kavetski, D., and M. P. Clark. 2010. “Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction.” Water Resour. Res. 46: W10511. https://doi.org/10.1029/2009WR008896.
Kouwen, N. 1988. “Watflood: A micro-computer based flood forecasting system based on real-time weather radar.” Can. Water Resour. J. 13 (1): 62–77. https://doi.org/10.4296/cwrj1301062.
Kouwen, N. 2010. WATFLOOD/ WATROUTE hydrological model routing & flow forecasting system. Waterloo, ON: Univ. of Waterloo.
Kouwen, N., E. D. Soulis, A. Pietroniro, J. Donald, and R. A. Harrington. 1993. “Grouped response units for distributed hydrologic modeling.” J. Water Resour. Plann. Manage. 119 (3): 289–305. https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(289).
Kratzert, F., D. Klotz, G. Shalev, G. Klambauer, S. Hochreiter, and G. Nearing. 2019. “Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets.” Hydrol. Earth Syst. Sci. 23 (12): 5089–5110. https://doi.org/10.5194/hess-23-5089-2019.
Kumar, R., L. Samaniego, and S. Attinger. 2013. “Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations.” Water Resour. Res. 49 (1): 360–379. https://doi.org/10.1029/2012WR012195.
Lehner, B., K. Verdin, and A. Jarvis. 2008. “New global hydrography derived from spaceborne elevation data.” EOS Trans. Am. Geophys. Union 89 (10): 93–94. https://doi.org/10.1029/2008EO100001.
Liang, X. 2003. “A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model.” J. Geophys. Res. 108 (16): 1989. https://doi.org/10.1029/2002JD003090.
Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges. 1994. “A simple hydrologically based model of land surface water and energy fluxes for general circulation models.” J. Geophys. Res. Atmos. 99 (7): 14415–14428. https://doi.org/10.1029/94JD00483.
Lindström, G., C. Pers, J. Rosberg, J. Strömqvist, and B. Arheimer. 2010. “Development and testing of the HYPE (hydrological predictions for the environment) water quality model for different spatial scales.” Hydrol. Res. 41 (3–4): 295–319. https://doi.org/10.2166/nh.2010.007.
Mai, J., K. C. Kornelsen, B. A. Tolson, V. Fortin, N. Gasset, D. Bouhemhem, D. Schäfer, M. Leahy, F. Anctil, and P. Coulibaly. 2020. “The Canadian surface prediction archive (CaSPAr): A platform to enhance environmental modeling in Canada and globally.” Bull. Am. Meteorol. Soc. 101 (3): E341–E356. https://doi.org/10.1175/BAMS-D-19-0143.1.
McInerney, D., M. Thyer, D. Kavetski, J. Lerat, and G. Kuczera. 2017. “Improving probabilistic prediction of daily streamflow by identifying Pareto optimal approaches for modeling heteroscedastic residual errors.” Water Resour. Res. 53 (3): 2199–2239. https://doi.org/10.1002/2016WR019168.
McSweeney, C. F., and R. G. Jones. 2016. “How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP?” Clim. Serv. 1: 24–29. https://doi.org/10.1016/j.cliser.2016.02.001.
Menard, C. B., et al. 2020. “Scientific and human errors in a snow model intercomparison.” Bull. Am. Meteorol. Soc. 102 (1): 1–46. https://doi.org/10.1175/BAMS-D-19-0329.1.
Michalak, A. M., et al. 2013. “Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions.” Proc. Natl. Acad. Sci. U.S.A 110 (16): 6448–6452. https://doi.org/10.1073/pnas.1216006110.
Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati. 2015. “Hydrologic and water quality models: Performance measures and evaluation criteria.” Trans. ASABE 58 (6): 1763–1785. https://doi.org/10.13031/trans.58.10715.
Muhammad, A., T. Stadnyk, F. Unduche, and P. Coulibaly. 2018. “Multi-model approaches for improving seasonal ensemble streamflow prediction scheme with various statistical post-processing techniques in the Canadian Prairie region.” Water 10 (11): 1604–1618. https://doi.org/10.3390/w10111604.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models: Part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Natural Resources Canada. 2020. “National hydro network—NHN—Geobase series.” Accessed March 03, 2021. https://open.canada.ca/data/en/dataset/a4b190fe-e090-4e6d-881e-b87956c07977.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. Soil and water assessment tool theoretical documentation version 2009. College Station, TX: Texas Water Resources Institute.
Newman, A. J., et al. 2015. “Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance.” Hydrol. Earth Syst. Sci. 19 (1): 209–223. https://doi.org/10.5194/hess-19-209-2015.
ORNL and DAAC. 2016. “Global 1-km gridded thickness of soil, regolith, and sedimentary deposit layers.” Accessed March 3, 2021. https://daac.ornl.gov/SOILS/guides/Global_Soil_Regolith_Sediment.html.
Perrin, C., C. Michel, and V. Andréassian. 2003. “Improvement of a parsimonious model for streamflow simulation.” J. Hydrol. 279 (1–4): 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
Pietroniro, A., et al. 2007. “Development of the MESH modelling system for hydrological ensemble forecasting of the Laurentian Great Lakes at the regional scale.” Hydrol. Earth Syst. Sci. 11 (4): 1279–1294. https://doi.org/10.5194/hess-11-1279-2007.
Rakovec, O., R. Kumar, J. Mai, M. Cuntz, S. Thober, M. Zink, S. Attinger, D. Schäfer, M. Schrön, and L. Samaniego. 2016. “Multiscale and multivariate evaluation of water fluxes and states over European river basins.” J. Hydrometeorol. 17 (1): 287–307. https://doi.org/10.1175/JHM-D-15-0054.1.
Rakovec, O., R. Kumar, M. McLeod, J. Mai, and L. Samaniego. 2020. “mHM-UFZ gridded simulations for the Great Lakes Runoff Intercomparison Project for Lake Erie.” Accessed March 19, 2021. https://doi.org/10.5281/zenodo.3886551.
Rakovec, O., N. Mizukami, R. Kumar, A. J. Newman, S. Thober, A. W. Wood, M. P. Clark, and L. Samaniego. 2019. “Diagnostic evaluation of large-domain hydrologic models calibrated across the contiguous United States.” J. Geophys. Res. Atmos. 124 (24): 13991–14007. https://doi.org/10.1029/2019JD030767.
Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, and D. J. Seo. 2004. “Overall distributed model intercomparison project results.” J. Hydrol. 298 (1–4): 27–60. https://doi.org/10.1016/j.jhydrol.2004.03.031.
Rosenzweig, C., et al. 2017. “Assessing inter-sectoral climate change risks: The role of ISIMIP.” Environ. Res. Lett. 12 (1): 010301. https://doi.org/10.1088/1748-9326/12/1/010301.
Roy, T., H. V. Gupta, A. Serrat-Capdevila, and J. B. Valdes. 2017. “Using satellite-based evapotranspiration estimates to improve the structure of a simple conceptual rainfall–runoff model.” Hydrol. Earth Syst. Sci. 21 (2): 879–896. https://doi.org/10.5194/hess-21-879-2017.
Samaniego, L., et al. 2017. “Toward seamless hydrologic predictions across spatial scales.” Hydrol. Earth Syst. Sci. 21 (9): 4323–4346. https://doi.org/10.5194/hess-21-4323-2017.
Samaniego, L., R. Kumar, and S. Attinger. 2010. “Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale.” Water Resour. Res. 46 (5): W05523. https://doi.org/10.1029/2008WR007327.
Schmale, D. G. III, A. P. Ault, W. Saad, D. T. Scott, and J. A. Westrick. 2019. “Perspectives on harmful algal blooms (HABs) and the cyberbiosecurity of freshwater systems.” Front. Bioeng. Biotechnol. 7 (128): 1–7. https://doi.org/10.3389/fbioe.2019.00128.
Shangguan, W., Y. Dai, Q. Duan, B. Liu, and H. Yuan. 2008. “The global soil dataset for earth system modeling.” Accessed March 3, 2021. http://globalchange.bnu.edu.cn/research/soilw.
Shangguan, W., T. Hengl, J. de Jesus, H. Yuan, and Y. Dai. 2017. “A global depth to bedrock dataset for earth system modeling.” Accessed March 3, 2021. http://globalchange.bnu.edu.cn/research/dtb.jsp.
Shen, H., J. Mai, B. A. Tolson, and M. Han. 2020. “Watershed shapes for the Great Lakes Runoff Intercomparison Project for Lake Erie (GRIP-E).” Accessed March 3, 2021. https://doi.org/10.5281/zenodo.3888690.
Smith, M., V. Koren, S. Reed, Z. Zhang, Y. Zhang, F. Moreda, Z. Cui, N. Mizukami, E. A. Anderson, and B. A. Cosgrove. 2012. “The distributed model intercomparison project—Phase 2: Motivation and design of the Oklahoma experiments.” J. Hydrol. 418–419: 3–16. https://doi.org/10.1016/j.jhydrol.2011.08.055.
Smith, M. B., D.-J. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong. 2004. “The distributed model intercomparison project (DMIP): Motivation and experiment design.” J. Hydrol. 298 (1–4): 4–26. https://doi.org/10.1016/j.jhydrol.2004.03.040.
SoilGrids. 2020. “Soilgrids250m 2.0.” Accessed March 3, 2021. https://soilgrids.org/.
Spieler, D., J. Mai, J. R. Craig, B. A. Tolson, and N. Schütze. 2020. “Automatic model structure identification for conceptual hydrologic models.” Water Resour. Res. 56 (9): e2019WR027009. https://doi.org/10.1029/2019WR027009.
Thober, S., M. Cuntz, M. Kelbling, R. Kumar, J. Mai, and L. Samaniego. 2019. “The multiscale routing model mrm v1.0: Simple river routing at resolutions from 1 to 50 km.” Geosci. Model Dev. 12 (6): 2501–2521. https://doi.org/10.5194/gmd-12-2501-2019.
Thompson, S. A., R. L. Stephenson, G. A. Rose, and S. D. Paul. 2019. “Collaborative fisheries research: The Canadian Fisheries Research Network experience.” Can. J. Fish. Aquat. Sci. 76 (5): 671–681. https://doi.org/10.1139/cjfas-2018-0450.
USACE. 2020. “Great Lakes water levels still setting records.” Accessed March 3, 2021. https://www.lre.usace.army.mil/Media/News-Releases/Article/2217758/great-lakes-water-levels-still-setting-records/.
USC (Universidade de Santiago de Compostela). 2013. “Global patterns of groundwater table depth.” Accessed March 3, 2021. http://thredds-gfnl.usc.es/thredds/catalog/GLOBALWTDFTP/catalog.html.
USDA. n.d. “Natural resources conservation service soils—Soil geography. Accessed March 3, 2021. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/.
USDA. 2021. “Cropscape and cropland data layer.” Accessed March 3, 2021. https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php.
USEPA. n.d. “Facts and figures about the Great Lakes.” Accessed March 3, 2021. https://www.epa.gov/greatlakes/facts-and-figures-about-great-lakes.
USGS. 2010. “USGS eros archive–digital elevation-global multi-resolution terrain elevation data.” Accessed March 3, 2021. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation.
USGS. 2018. “USGS eros archive–digital elevation global 30 arc-second elevation (gtopo30).” Accessed March 3, 2021. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-gtopo30.
USGS. 2019. “Mcd12q1 v006 modis/terra+aqua land cover type yearly l3 global 500 m sin grid.” Accessed March 3, 2021. https://lpdaac.usgs.gov/products/mcd12q1v006/.
USGS. 2021. “National hydrography dataset.” Accessed March 3, 2021. https://www.usgs.gov/core-science-systems/ngp/national-hydrography/national-hydrography-dataset.
Valéry, A., V. Andréassian, and C. Perrin. 2014. “‘As simple as possible but not simpler’: What is useful in a temperature-based snow-accounting routine? Part 1—Comparison of six snow accounting routines on 380 catchments.” J. Hydrol. 517 (Sep): 1166–1175. https://doi.org/10.1016/j.jhydrol.2014.04.059.
Verseghy, D. L. 2000. “The Canadian land surface scheme (CLASS): Its history and future.” Atmos. Ocean 38 (1): 1–13. https://doi.org/10.1080/07055900.2000.9649637.
Wada, Y., et al. 2013. “Multimodel projections and uncertainties of irrigation water demand under climate change.” Geophys. Res. Lett. 40 (17): 4626–4632. https://doi.org/10.1002/grl.50686.
Wang, L., et al. 2015. “A spatial classification and database for management, research, and policy making: The Great Lakes aquatic habitat framework.” J. Great Lakes Res. 41 (2): 584–596. https://doi.org/10.1016/j.jglr.2015.03.017.
Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe. 2014. “The inter-sectoral impact model intercomparison project (ISI–MIP): Project framework.” Proc. Natl. Acad. Sci. U.S.A 111 (9): 3228–3232. https://doi.org/10.1073/pnas.1312330110.
Zink, M., J. Mai, M. Cuntz, and L. Samaniego. 2018. “Conditioning a hydrologic model using patterns of remotely sensed land surface temperature.” Water Resour. Res. 54 (4): 2976–2998. https://doi.org/10.1002/2017WR021346.

Information & Authors


Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 9September 2021


Received: Oct 16, 2020
Accepted: Feb 16, 2021
Published online: Jun 30, 2021
Published in print: Sep 1, 2021
Discussion open until: Nov 30, 2021



Research Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1 (corresponding author). ORCID: https://orcid.org/0000-0002-1132-2342. Email: [email protected]
Bryan A. Tolson
Professor, Dept. of Civil and Environmental Engineering, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
Ph.D. Student, Dept. of Civil and Environmental Engineering, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1. ORCID: https://orcid.org/0000-0002-5979-2159
Research Scientist, Meteorological Research Div., Environment and Climate Change Canada, Dorval, QC, Canada H9P 1J3. ORCID: https://orcid.org/0000-0002-9787-9124
Research Scientist, Meteorological Research Div., Environment and Climate Change Canada, Dorval, QC, Canada H9P 1J3. ORCID: https://orcid.org/0000-0002-2145-4592
Physical Scientist, Meteorological Service of Canada, Environment and Climate Change Canada, Dorval, QC, Canada H9P 1J3. ORCID: https://orcid.org/0000-0003-4542-4408
Hervé Awoye
Postdoctoral Scholar, Dept. of Geography, Univ. of Calgary, Calgary, AB, Canada T2N 1N4.
Tricia A. Stadnyk
Associate Professor, Dept. of Geography, Univ. of Calgary, Calgary, AB, Canada T2N 1N4.
Research Physical Scientist, Integrated Physical and Ecological Modeling and Forecasting Branch, Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, MI 48108; formerly, US Army Corps of Engineers, Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, MI 48226. ORCID: https://orcid.org/0000-0002-5480-5408
Emily A. Bradley
Hydraulic Engineer, US Army Corps of Engineers, Detroit District, Great Lakes Hydraulics and Hydrology Office, Detroit, MI 48226.
Frank Seglenieks
Water Resources Engineer, National Hydrological Services, Environment and Climate Change Canada, Burlington, ON, Canada L7S 1A1.
André G. T. Temgoua
Water Resources Engineer, National Hydrological Services, Environment and Climate Change Canada, Burlington, ON, Canada L7S 1A1.
Daniel G. Princz
Coordinator and Officer Environmental Programs, National Hydrological Services, Environment and Climate Change Canada, Saskatoon, SK, Canada S7N 3H5.
Shervan Gharari
Research Associate, Coldwater Laboratory, Univ. of Saskatchewan, Canmore, AB, Canada T1W 3G1.
Amin Haghnegahdar
Associate Member, Global Institute for Water Security, Univ. of Saskatchewan, Saskatoon, SK, Canada S7N 3H5.
Research Scientist, Global Institute for Water Security and Center for Hydrology, Univ. of Saskatchewan, Saskatoon, SK, Canada S7N 3H5. ORCID: https://orcid.org/0000-0002-3621-0021
Saman Razavi
Associate Professor, School of Environment and Sustainability, Dept. of Civil, Geological and Environmental Engineering, and Global Institute for Water Security, Univ. of Saskatchewan, Saskatoon, SK, Canada S7N 3H5.
Martin Gauch
Ph.D. Student, Institute for Machine Learning, Johannes Kepler Univ., 4040 Linz, Austria; formerly, David R. Cheriton School of Computer Science, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
Jimmy Lin
Professor, David R. Cheriton School of Computer Science, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
Oak Ridge Institute for Science and Education (ORISE) Postdoctoral Fellow, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711. ORCID: https://orcid.org/0000-0001-6696-4804
Yongping Yuan
Senior Research Hydrologist, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711.
Meghan McLeod
Master Candidate, Earth and Environmental Sciences, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
Nandita B. Basu
Associate Professor, Earth and Environmental Sciences and Water Institute, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1.
Rohini Kumar
Research Associate, Computational Hydrosystems, Helmholtz Centre for Environmental Research–UFZ, Leipzig 04318, Germany.
Research Associate, Faculty of Environmental Sciences, Czech Univ. of Life Sciences, Prague 16500, Czech Republic; Computational Hydrosystems, Helmholtz Centre for Environmental Research–UFZ, Leipzig 04138, Germany. ORCID: https://orcid.org/0000-0003-2451-3305
Luis Samaniego
Deputy Head of Department, Computational Hydrosystems, Helmholtz Centre for Environmental Research–UFZ, Leipzig 04138, Germany.
Sabine Attinger
Head of Department, Computational Hydrosystems, Helmholtz Centre for Environmental Research–UFZ, Leipzig 04138, Germany.
Narayan K. Shrestha
Postdoctoral Research Fellow, School of Engineering, Univ. of Guelph, Guelph, ON, Canada N1G 2W1.
Prasad Daggupati
Assistant Professor, School of Engineering, Univ. of Guelph, Guelph, ON, Canada N1G 2W1.
Tirthankar Roy
Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Nebraska–Lincoln, Lincoln, NE 68182.
Sungwook Wi
Research Assistant Professor, Dept. of Civil and Environmental Engineering, Univ. of Massachusetts, Amherst, MA 01003.
Computer Specialist, Integrated Physical and Ecological Modeling and Forecasting Branch, Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, MI 48108. ORCID: https://orcid.org/0000-0003-1423-6770
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Waterloo, Waterloo, ON, Canada N2L 3G1. ORCID: https://orcid.org/0000-0003-2715-7166
Alain Pietroniro
Professor, Dept. Civil Engineering, Univ. of Calgary, Calgary, AB, Canada T2N 1N4; formerly, Executive Director, National Hydrological Services, Environment and Climate Change Canada, Saskatoon, SK, Canada S7N 3H5.

Metrics & Citations



Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth, Hydrology and Earth System Sciences, 10.5194/hess-26-5859-2022, 26, 22, (5859-5877), (2022).
  • The Great Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL), Hydrology and Earth System Sciences, 10.5194/hess-26-3537-2022, 26, 13, (3537-3572), (2022).
  • Accessing the Impact of Meteorological Variables on Machine Learning Flood Susceptibility Mapping, Remote Sensing, 10.3390/rs14071656, 14, 7, (1656), (2022).
  • Effect of Model Structure and Calibration Algorithm on Discharge Simulation in the Acısu Basin, Turkey, Climate, 10.3390/cli10120196, 10, 12, (196), (2022).
  • Navigating Great Lakes Hydroclimate Data, Frontiers in Water, 10.3389/frwa.2022.803869, 4, (2022).
  • The Impacts of Climate Change on Land Hydroclimatology of the Laurentian Great Lakes Basin, Frontiers in Water, 10.3389/frwa.2022.801134, 4, (2022).
  • The sensitivity of simulated streamflow to individual hydrologic processes across North America, Nature Communications, 10.1038/s41467-022-28010-7, 13, 1, (2022).
  • Time to Update the Split‐Sample Approach in Hydrological Model Calibration, Water Resources Research, 10.1029/2021WR031523, 58, 3, (2022).
  • A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model, Hydrology and Earth System Sciences, 10.5194/hess-25-4917-2021, 25, 9, (4917-4945), (2021).
  • Improving Snow Analyses for Hydrological Forecasting at ECCC Using Satellite-Derived Data, Remote Sensing, 10.3390/rs13245022, 13, 24, (5022), (2021).

View Options







Copy the content Link

Share with email

Email a colleague