Abstract

This review provides a broad overview of the current state of flood research, current challenges, and future directions. Beginning with a discussion of flood-generating mechanisms, the review synthesizes the literature on flood forecasting, multivariate and nonstationary flood frequency analysis, urban flooding, and the remote sensing of floods. Challenges and future flood research directions are outlined and highlight emerging topics where more work is needed to help mitigate flood risks. It is anticipated that the future urban systems will likely have more significant flood risk due to the compounding effects of continued climate change and land-use intensification. The timely prediction of urban floods, quantification of the socioeconomic impacts of flooding, and developing mitigation strategies will continue to be challenging. There is a need to bridge the scales between model capabilities and end-user needs by integrating multiscale models, stakeholder input, and social and citizen science input for flood monitoring, mapping, and dissemination. Although much progress has been made in using remote sensing for flood applications, recent and upcoming Earth Observations provide excellent potential to unlock additional benefits for flood applications. The flood community can benefit from more downscaled, as well as ensemble scenarios that consider climate and land-use changes. Efforts are also needed for data assimilation approaches, especially to ingest local, citizen, and social media data. Also needed are enhanced capabilities to model compound hazards and assess as well as help reduce social vulnerability and impacts. The dynamic and complex interactions between climate, societal change, watershed processes, and human factors often confronted with deep uncertainty highlights the need for transdisciplinary research between science, policymakers, and stakeholders to reduce flood risk and social vulnerability.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research is partly supported by the National Science Foundation (Grant No. 1855374).

References

Abbasi, M., A. Farokhnia, M. Bahreinimotlagh, and R. Roozbahani. 2021. “ A hybrid of random forest and deep auto-encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction.” J. Hydrol. 597 ( Jun ): 125717. https://doi.org/10.1016/j.jhydrol.2020.125717.
Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rasmussen. 1986. “ An introduction to the European Hydrological System—Systeme Hydrologique Europeen, ‘SHE’, 1: History and philosophy of a physically-based, distributed modelling system.” J. Hydrol. 87 ( 1 ): 45 – 59. https://doi.org/10.1016/0022-1694(86)90114-9.
Acosta-Coll, M., F. Ballester-Merelo, M. Martinez-Peiró, and E. De la Hoz-Franco. 2018. “ Real-time early warning system design for pluvial flash floods—A review.” Sensors 18 ( 7 ): 2255. https://doi.org/10.3390/s18072255.
Adamowski, J., and K. Sun. 2010. “ Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds.” J. Hydrol. 390 ( 1–2 ): 85 – 91. https://doi.org/10.1016/j.jhydrol.2010.06.033.
Adams, T. E. III. 2016. “Flood forecasting in the United States NOAA/national weather service.” Chap. 10 in Flood forecasting: A global perspective, edited by T. E. Adams III and T. C. Pagano, 249–310. Cambridge, MA: Academic Press.
Adams, T. E. III, and T. C. Pagano. 2016. Flood forecasting: A global perspective. Cambridge, MA : Academic Press.
Aerts, J. C., W. J. Botzen, K. C. Clarke, S. L. Cutter, J. W. Hall, B. Merz, E. Michel-Kerjan, J. Mysiak, S. Surminski, and H. Kunreuther. 2018. “ Integrating human behaviour dynamics into flood disaster risk assessment.” Nat. Clim. Change 8 ( 3 ): 193 – 199. https://doi.org/10.1038/s41558-018-0085-1.
Ahmadalipour, A., and H. Moradkhani. 2019. “ A data-driven analysis of flash flood hazard, fatalities, and damages over the CONUS during 1996–2017.” J. Hydrol. 578 ( Nov ): 124106. https://doi.org/10.1016/j.jhydrol.2019.124106.
Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. de Roo, P. Salamon, K. Wyser, and L. Feyen. 2017. “ Global projections of river flood risk in a warmer world.” Earth’s Future 5 ( 2 ): 171 – 182. https://doi.org/10.1002/2016EF000485.
Alfieri, L., P. Burek, L. Feyen, and G. Forzieri. 2015. “ Global warming increases the frequency of river floods in Europe.” Hydrol. Earth Syst. Sci. 19 ( 5 ): 2247 – 2260. https://doi.org/10.5194/hess-19-2247-2015.
Alfieri, L., S. Cohen, J. Galantowicz, G. J. Schumann, M. A. Trigg, E. Zsoter, C. Prudhomme, A. Kruczkiewicz, E. C. de Perez, and Z. Flamig. 2018. “ A global network for operational flood risk reduction.” Environ. Sci. Policy 84 ( Jun ): 149 – 158. https://doi.org/10.1016/j.envsci.2018.03.014.
Alfieri, L., J. Thielen, and F. Pappenberger. 2012. “ Ensemble hydro-meteorological simulation for flash flood early detection in southern Switzerland.” J. Hydrol. 424 ( Mar ): 143 – 153. https://doi.org/10.1016/j.jhydrol.2011.12.038.
Allaire, M. 2020. “Can social media enable flood risk mitigation? Evidence using propensity score matching.” In Vol. 2020 of Proc., AGU Fall Meeting Abstracts, GC033-08. Washington, DC: American Geophysical Union.
Ammar, M. E., A. Gharib, Z. Islam, E. G. R. Davies, M. Seneka, and M. Faramarzi. 2020. “ Future floods using hydroclimatic simulations and peaks over threshold: An alternative to nonstationary analysis inferred from trend tests.” Adv. Water Resour. 136 ( Feb ): 103463. https://doi.org/10.1016/j.advwatres.2019.103463.
Annis, A., and F. Nardi. 2019. “ Integrating VGI and 2D hydraulic models into a data assimilation framework for real time flood forecasting and mapping.” Geo-spatial Inf. Sci. 22 ( 4 ): 223 – 236. https://doi.org/10.1080/10095020.2019.1626135.
Ansell, L., and L. Dalla Valle. 2021. “Social media integration of flood data: A vine copula-based approach.” Preprint, submitted April 5, 2021. https://arxiv.org/abs/2104.01869.
Apel, H., B. Merz, and A. H. Thieken. 2009. “ Influence of dike breaches on flood frequency estimation.” Comput. Geosci. 35 ( 5 ): 907 – 923. https://doi.org/10.1016/j.cageo.2007.11.003.
Archfield, S. A., R. M. Hirsch, A. Viglione, and G. Blöschl. 2016. “ Fragmented patterns of flood change across the United States.” Geophys. Res. Lett. 43 ( 19 ): 10,232 – 10,239. https://doi.org/10.1002/2016GL070590.
Arnell, N. W., and S. N. Gosling. 2016. “ The impacts of climate change on river flood risk at the global scale.” Clim. Change 134 ( 3 ): 387 – 401. https://doi.org/10.1007/s10584-014-1084-5.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “ Large area hydrologic modeling and assessment part I: Model development 1.” JAWRA J. Am. Water Resour. Assoc. 34 ( 1 ): 73 – 89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Arshad, B., R. Ogie, J. Barthelemy, B. Pradhan, N. Verstaevel, and P. Perez. 2019. “ Computer vision and IOT-based sensors in flood monitoring and mapping: A systematic review.” Sensors 19 ( 22 ): 5012. https://doi.org/10.3390/s19225012.
Aryal, Y. N., G. Villarini, W. Zhang, and G. A. Vecchi. 2018. “ Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic oscillation and El Niño-Southern oscillation.” J. Hydrol. 559 ( Apr ): 698 – 710. https://doi.org/10.1016/j.jhydrol.2018.02.072.
Ávila, A., F. Justino, A. Wilson, D. Bromwich, and M. Amorim. 2016. “ Recent precipitation trends, flash floods and landslides in southern Brazil.” Environ. Res. Lett. 11 ( 11 ): 114029. https://doi.org/10.1088/1748-9326/11/11/114029.
Ayalew, T. B., W. F. Krajewski, and R. Mantilla. 2014. “ Connecting the power-law scaling structure of peak-discharges to spatially variable rainfall and catchment physical properties.” Adv. Water Resour. 71 ( Sep ): 32 – 43. https://doi.org/10.1016/j.advwatres.2014.05.009.
Ayalew, T. B., W. F. Krajewski, and R. Mantilla. 2015. “ Analyzing the effects of excess rainfall properties on the scaling structure of peak discharges: Insights from a mesoscale river basin.” Water Resour. Res. 51 ( 6 ): 3900 – 3921. https://doi.org/10.1002/2014WR016258.
Bafitlhile, T. M., and Z. Li. 2019. “ Applicability of ε-support vector machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China.” Water 11 ( 1 ): 85. https://doi.org/10.3390/w11010085.
Baker, V. R. 2008. “ Paleoflood hydrology: Origin, progress, prospects.” Geomorphology 101 ( 1–2 ): 1 – 13. https://doi.org/10.1016/j.geomorph.2008.05.016.
Barendrecht, M., N. Sairam, L. Cumiskey, A. D. Metin, F. Holz, S. J. Priest, and H. Kreibich. 2020. “ Needed: A systems approach to improve flood risk mitigation through private precautionary measures.” Water Secur. 11 ( Dec ): 100080. https://doi.org/10.1016/j.wasec.2020.100080.
Barnett, T. P., J. C. Adam, and D. P. Lettenmaier. 2005. “ Potential impacts of a warming climate on water availability in snow-dominated regions.” Nature 438 ( 7066 ): 303 – 309. https://doi.org/10.1038/nature04141.
Barnier, B., L. Siefridt, and P. Marchesiello. 1995. “ Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses.” J. Mar. Syst. 6 ( 4 ): 363 – 380. https://doi.org/10.1016/0924-7963(94)00034-9.
Barros, V., C. Field, D. Dokke, M. Mastrandrea, K. Mach, T. Bilir, M. Chatterjee, K. Ebi, Y. Estrada, and R. Genova. 2014. Climate change 2014: Impacts, adaptation, and vulnerability-Part B: Regional aspects—Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Barth, N. A., G. Villarini, M. A. Nayak, and K. White. 2017. “ Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers.” Water Resour. Res. 53 ( 1 ): 257 – 269. https://doi.org/10.1002/2016WR019064.
Barth, N. A., G. Villarini, and K. White. 2019. “ Accounting for mixed populations in flood frequency analysis: Bulletin 17C perspective.” J. Hydrol. Eng. 24 ( 3 ): 04019002. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001762.
Bartholmes, J., and E. Todini. 2005. “ Coupling meteorological and hydrological models for flood forecasting.” Hydrol. Earth Syst. Sci. Discuss. 9 ( 4 ): 333 – 346. https://doi.org/10.5194/hess-9-333-2005, 2005.
Basu, B., R. D. Bhowmik, and S. Arumugam. 2020. “Changing seasonality of annual maximum floods over the conterminous US.” In Earth and space science open archive ESSOAr. Washington, DC: American Geophysical Union.
Bell, V. A., A. L. Kay, H. N. Davies, and R. G. Jones. 2016. “ An assessment of the possible impacts of climate change on snow and peak river flows across Britain.” Clim. Change 136 ( 3 ): 539 – 553. https://doi.org/10.1007/s10584-016-1637-x.
Bellos, V., and G. Tsakiris. 2015. “ Comparing various methods of building representation for 2D flood modelling in built-up areas.” Water Resour. Manage. 29 ( 2 ): 379 – 397. https://doi.org/10.1007/s11269-014-0702-3.
Benke, A. C., I. Chaubey, G. M. Ward, and E. L. Dunn. 2000. “ Flood pulse dynamics of an unregulated river floodplain in the Southeastern US coastal plain.” Ecology 81 ( 10 ): 2730 – 2741. https://doi.org/10.1890/0012-9658(2000)081[2730:FPDOAU]2.0.CO;2.
Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan. 2016. “ Dominant flood generating mechanisms across the United States.” Geophys. Res. Lett. 43 ( 9 ): 4382 – 4390. https://doi.org/10.1002/2016GL068070.
Berkhahn, S., L. Fuchs, and I. Neuweiler. 2019. “ An ensemble neural network model for real-time prediction of urban floods.” J. Hydrol. 575 ( Aug ): 743 – 754. https://doi.org/10.1016/j.jhydrol.2019.05.066.
Bertola, M., A. Viglione, S. Vorogushyn, D. Lun, B. Merz, and G. Blöschl. 2021. “Do small and large floods have the same drivers of change? A regional attribution analysis in Europe.” Hydrol. Earth Syst. Sci. 25 (3): 1347–1364. https://doi.org/10.5194/hess-25-1347-2021.
Betts, R. A., et al. 2018. “ Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.” Philos. Trans. R. Soc. A 376 ( 2119 ): 20160452. https://doi.org/10.1098/rsta.2016.0452.
Bevacqua, E., D. Maraun, M. I. Vousdoukas, E. Voukouvalas, M. Vrac, L. Mentaschi, and M. Widmann. 2019. “ Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change.” Sci. Adv. 5 ( 9 ): eaaw5531. https://doi.org/10.1126/sciadv.aaw5531.
Beven, K. 2021. “ Issues in generating stochastic observables for hydrological models.” Hydrol. Process. 35 ( 6 ): e14203. https://doi.org/10.1002/hyp.14203.
Beven, K., P. Quinn, R. Romanowicz, J. Freer, J. Fisher, and R. Lamb. 1995. TOPMODEL and GRIDATB: A users guide to the distribution versions, 31. Lancaster, UK : Lancaster Univ.
Bhagwat, P. P., and R. Maity. 2013. “ Hydroclimatic streamflow prediction using least square-support vector regression.” ISH J. Hydraul. Eng. 19 ( 3 ): 320 – 328. https://doi.org/10.1080/09715010.2013.819705.
Binh, L. T. H., N. V. Umamahesh, and E. V. Rathnam. 2019. “ High-resolution flood hazard mapping based on nonstationary frequency analysis: Case study of Ho Chi Minh City, Vietnam.” Hydrol. Sci. J. 64 ( 3 ): 318 – 335. https://doi.org/10.1080/02626667.2019.1581363.
Birkholz, S., M. Muro, P. Jeffrey, and H. M. Smith. 2014. “ Rethinking the relationship between flood risk perception and flood management.” Sci. Total Environ. 478 ( Apr ): 12 – 20. https://doi.org/10.1016/j.scitotenv.2014.01.061.
Blöschl, G., et al. 2017. “ Changing climate shifts timing of European floods.” Science 357 ( 6351 ): 588 – 590. https://doi.org/10.1126/science.aan2506.
Blöschl, G., et al. 2019. “Changing climate both increases and decreases European river floods.” Nature 573 (7772):108–111. https://doi.org/10.1038/s41586-019-1495-6.
Blum, A. G., S. A. Archfield, R. M. Hirsch, R. M. Vogel, J. E. Kiang, and R. W. Dudley. 2019. “ Updating estimates of low-streamflow statistics to account for possible trends.” Hydrol. Sci. J. 64 ( 12 ): 1404 – 1414. https://doi.org/10.1080/02626667.2019.1655148.
Bonnin, G. M., K. Maitaria, and M. Yekta. 2011. “ Trends in rainfall exceedances in the observed record in selected areas of the United States.” JAWRA J. Am. Water Resour. Assoc. 47 ( 6 ): 1173 – 1182. https://doi.org/10.1111/j.1752-1688.2011.00603.x.
Borah, S. B., T. Sivasankar, M. N. Ramya, and P. L. Raju. 2018. “ Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data.” Environ. Monit. Assess. 190 ( 9 ): 1. https://doi.org/10.1007/s10661-018-6893-y.
Bouwer, L. M. 2011. “ Have disaster losses increased due to anthropogenic climate change? ” Bull. Am. Meteorol. Soc. 92 ( 1 ): 39 – 46. https://doi.org/10.1175/2010BAMS3092.1.
Brivio, P. A., R. Colombo, M. Maggi, and R. Tomasoni. 2002. “ Integration of remote sensing data and GIS for accurate mapping of flooded areas.” Int. J. Remote Sens. 23 ( 3 ): 429 – 441. https://doi.org/10.1080/01431160010014729.
Bruen, M., and J. Yang. 2006. “ Combined hydraulic and black-box models for flood forecasting in urban drainage systems.” J. Hydrol. Eng. 11 ( 6 ): 589 – 596. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(589).
Brunner, M. I., L. Slater, L. M. Tallaksen, and M. Clark. 2021. “ Challenges in modeling and predicting floods and droughts: A review.” WIREs Water 8 ( 3 ): e1520. https://doi.org/10.1002/wat2.1520.
Bubeck, P., H. Kreibich, E. C. Penning-Rowsell, W. J. W. Botzen, H. de Moel, and F. Klijn. 2017. “ Explaining differences in flood management approaches in Europe and in the USA—A comparative analysis.” J. Flood Risk Manage. 10 ( 4 ): 436 – 445. https://doi.org/10.1111/jfr3.12151.
Burnash, R. 1995. “The NWS river forecast system-catchment modeling.” In Computer models of watershed hydrology, 311–366. Littleton, CO: Water Resources Publications.
Carpenter, T. M., K. P. Georgakakos, and J. A. Sperfslagea. 2001. “ On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use.” J. Hydrol. 253 ( 1–4 ): 169 – 193. https://doi.org/10.1016/S0022-1694(01)00476-0.
Challies, E., J. Newig, T. Thaler, E. Kochskämper, and M. Levin-Keitel. 2016. “ Participatory and collaborative governance for sustainable flood risk management: An emerging research agenda.” Environ. Sci. Policy 55 (Pt. 2): 275 – 280. https://doi.org/10.1016/j.envsci.2015.09.012.
Chang, F.-J., K. Hsu, and L.-C. Chang. 2019. Flood forecasting using machine learning methods. Basel, Switzerland : Multidisciplinary Digital Publishing Institute.
Chang, L. C., H. Y. Shen, and F. J. Chang. 2014. “ Regional flood inundation nowcast using hybrid SOM and dynamic neural networks.” J. Hydrol. 519 ( Nov ): 476 – 489. https://doi.org/10.1016/j.jhydrol.2014.07.036.
Chang, W., M. L. Stein, J. Wang, V. R. Kotamarthi, and E. J. Moyer. 2016. “ Changes in spatiotemporal precipitation patterns in changing climate conditions.” J. Clim. 29 ( 23 ): 8355 – 8376. https://doi.org/10.1175/JCLI-D-15-0844.1.
Chatterjee, C., R. Kumar, and P. Mani. 2003. “ Delineation of surface waterlogged areas in parts of Bihar using IRS-1C LISS-III data.” J. Indian Soc. Remote Sens. 31 ( 1 ): 57 – 65. https://doi.org/10.1007/BF03030752.
Chen, N., C. Xiong, W. Du, C. Wang, X. Lin, and Z. Chen. 2019. “ An improved genetic algorithm coupling a back-propagation neural network model (IGA-BPNN) for water-level predictions.” Water 11 ( 9 ): 1795. https://doi.org/10.3390/w11091795.
Chen, P. A., L. C. Chang, and F. J. Chang. 2013. “ Reinforced recurrent neural networks for multi-step-ahead flood forecasts.” J. Hydrol. 497 ( Aug ): 71 – 79. https://doi.org/10.1016/j.jhydrol.2013.05.038.
Chen, Y., Q. Ren, F. Huang, H. Xu, and I. Cluckie. 2011. “ Liuxihe model and its modeling to river basin flood.” J. Hydrol. Eng. 16 ( 1 ): 33 – 50. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000286.
Chew, C., J. T. Reager, and E. Small. 2018. “ CYGNSS data map flood inundation during the 2017 Atlantic hurricane season.” Sci. Rep. 8 ( 1 ): 1 – 8. https://doi.org/10.1038/s41598-018-27673-x.
Chew, C., and E. Small. 2020. “ Estimating inundation extent using CYGNSS data: A conceptual modeling study.” Remote Sens. Environ. 246 ( Sep ): 111869. https://doi.org/10.1016/j.rse.2020.111869.
Chidthong, Y., H. Tanaka, and S. Supharatid. 2009. “ Developing a hybrid multi-model for peak flood forecasting.” Hydrol. Processes: Int. J. 23 ( 12 ): 1725 – 1738. https://doi.org/10.1002/hyp.7307.
Ching, J., G. Mills, B. Bechtel, L. See, J. Feddema, X. Wang, C. Ren, O. Brousse, A. Martilli, and M. Neophytou. 2018. “ WUDAPT: An urban weather, climate, and environmental modeling infrastructure for the Anthropocene.” Bull. Am. Meteorol. Soc. 99 ( 9 ): 1907 – 1924. https://doi.org/10.1175/BAMS-D-16-0236.1.
Chini, M., R. Hostache, L. Giustarini, and P. Matgen. 2017. “ A hierarchical split-based approach for parametric thresholding of SAR images: Flood inundation as a test case.” IEEE Trans. Geosci. Remote Sens. 55 ( 12 ): 6975 – 6988. https://doi.org/10.1109/TGRS.2017.2737664.
Chowdhary, H., and V. P. Singh. 2020. “Multivariate frequency distributions in hydrology.” In Statistical analysis of hydrologic variables: Methods and applications, 407–489. Reston, VA: ASCE. https://doi.org/10.1061/9780784415177.ch11.
Ciullo, A., K. M. De Bruijn, J. H. Kwakkel, and F. Klijn. 2019. “ Systemic flood risk management: The challenge of accounting for hydraulic interactions.” Water 11 ( 12 ): 2530. https://doi.org/10.3390/w11122530.
Cloke, H. L., and F. Pappenberger. 2009. “ Ensemble flood forecasting: A review.” J. Hydrol. 375 ( 3–4 ): 613 – 626. https://doi.org/10.1016/j.jhydrol.2009.06.005.
Cohn, T. A., J. F. England, C. E. Berenbrock, R. R. Mason, J. R. Stedinger, and J. R. Lamontagne. 2013. “ A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series.” Water Resour. Res. 49 ( 8 ): 5047 – 5058. https://doi.org/10.1002/wrcr.20392.
Cohn, T. A., W. L. Lane, and W. G. Baier. 1997. “ An algorithm for computing moments-based flood quantile estimates when historical flood information is available.” Water Resour. Res. 33 ( 9 ): 2089 – 2096. https://doi.org/10.1029/97WR01640.
Cohn, T. A., and H. F. Lins. 2005. “ Nature’s style: Naturally trendy.” Geophys. Res. Lett. 32 ( 23 ). https://doi.org/10.1029/2005GL024476.
Cohn, T. A., and J. R. Stedinger. 1987. “ Use of historical information in a maximum-likelihood framework.” J. Hydrol. 96 ( 1 ): 215 – 223. https://doi.org/10.1016/0022-1694(87)90154-5.
Coles, S. 2001. “Extremes of non-stationary sequences.” An introduction to statistical modeling of extreme values. Springer series in statistics, edited by S. Coles, 105–123. London: Springer.
Comiskey, J. J. 2005. “ Overview of flood damages prevented by US Army Corps of Engineers flood control reduction programs and activities.” J. Contemp. Water Res. Educ. 130 ( 1 ): 13 – 19. https://doi.org/10.1111/j.1936-704X.2005.mp130001003.x.
Cook, B. R., and S. N. Lane. 2010. “ Communities of knowledge: Science and flood management in Bangladesh.” Environ. Hazards 9 ( 1 ): 8 – 25. https://doi.org/10.3763/ehaz.2010.SI06.
Corani, G., and G. Guariso. 2005. “ Coupling fuzzy modeling and neural networks for river flood prediction.” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35 ( 3 ): 382 – 390. https://doi.org/10.1109/TSMCC.2004.843229.
Couasnon, A., D. Eilander, S. Muis, T. I. E. Veldkamp, I. D. Haigh, T. Wahl, H. C. Winsemius, and P. J. Ward. 2020. “ Measuring compound flood potential from river discharge and storm surge extremes at the global scale.” Nat. Hazards Earth Syst. Sci. 20 ( 2 ): 489 – 504. https://doi.org/10.5194/nhess-20-489-2020.
Crawford, N. H., and R. K. Linsley. 1966. Digital simulation in hydrology: Stanford watershed model 4.. Stanford, CA : Stanford Univ.
Crist, E. P. 1985. “ A TM tasseled cap equivalent transformation for reflectance factor data.” Remote Sens. Environ. 17 ( 3 ): 301 – 306. https://doi.org/10.1016/0034-4257(85)90102-6.
Dankers, R., et al. 2014. “ First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble.” Proc. Natl. Acad. Sci. 111 ( 9 ): 3257 – 3261. https://doi.org/10.1073/pnas.1302078110.
Dankers, R., and Z. W. Kundzewicz. 2020. “ Grappling with uncertainties in physical climate impact projections of water resources.” Clim. Change 163 ( 3 ): 1379 – 1397. https://doi.org/10.1007/s10584-020-02858-4.
Das, A., and K.-E. Lindenschmidt. 2020. “ Current status and advancement suggestions of ice-jam flood hazard and risk assessment.” Environ. Rev. 28 ( 4 ): 373 – 379. https://doi.org/10.1139/er-2019-0063.
Dasgupta, A., S. Grimaldi, R. A. A. J. Ramsankaran, V. R. Pauwels, J. P. Walker, M. Chini, R. Hostache, and P. Matgen. 2018. “Flood mapping using synthetic aperture radar sensors from local to global scales.” In Global flood hazard: Applications in modeling, mapping, and forecasting, 55–77. Washington, DC: American Geophysical Union.
Davenport, F. V., J. E. Herrera-Estrada, M. Burke, and N. S. Diffenbaugh. 2020. “ Flood size increases nonlinearly across the western United States in response to lower snow-precipitation ratios.” Water Resour. Res. 56 ( 1 ): e2019WR025571. https://doi.org/10.1029/2019WR025571.
De Gregorio, L., M. Callegari, P. Mazzoli, S. Bagli, D. Broccoli, A. Pistocchi, and C. Notarnicola. 2018. “ Operational river discharge forecasting with support vector regression technique applied to alpine catchments: Results, advantages, limits and lesson learned.” Water Resour. Manage. 32 ( 1 ): 229 – 242. https://doi.org/10.1007/s11269-017-1806-3.
Demeritt, D., E. M. Stephens, L. Créton-Cazanave, C. Lutoff, I. Ruin, and S. Nobert. 2016. “Communicating and using ensemble flood forecasts in flood incident management: Lessons from social science.” In Handbook of hydrometeorological ensemble forecasting, edited by Q. Duan, F. Pappenberger, J. Thielen, A. Wood, H. L. Cloke, and J. C. Schaake, 1–30. Berlin: Springer.
De Moel, H., B. Jongman, H. Kreibich, B. Merz, E. Penning-Rowsell, and P. J. Ward. 2015. “ Flood risk assessments at different spatial scales.” Mitigation Adapt. Strategies Global Change 20 ( 6 ): 865 – 890. https://doi.org/10.1007/s11027-015-9654-z.
Dettinger, M. 2011. “ Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes 1.” JAWRA J. Am. Water Resour. Assoc. 47 ( 3 ): 514 – 523. https://doi.org/10.1111/j.1752-1688.2011.00546.x.
Di Baldassarre, G., M. Kooy, J. S. Kemerink, and L. Brandimarte, and. 2013. “ Towards understanding the dynamic behaviour of floodplains as human-water systems.” Hydrol. Earth Syst. Sci. 17 ( 8 ): 3235–3244. https://doi.org/10.5194/hess-17-3235-2013.
Di Baldassarre, G., A. Viglione, G. Carr, L. Kuil, K. Yan, L. Brandimarte, and G. Blöschl. 2015. “ Debates—Perspectives on socio-hydrology: Capturing feedbacks between physical and social processes.” Water Resour. Res. 51 ( 6 ): 4770 – 4781. https://doi.org/10.1002/2014WR016416.
Dimitriadis, P., and D. Koutsoyiannis. 2018. “Stochastic synthesis approximating any process dependence and distribution.” Stochastic Environ. Res. Risk Assess. 32 (6): 1493–1515. https://doi.org/10.1007/s00477-018-1540-2.
Dimitriadis, P., D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou. 2021. “ A global-scale investigation of stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle processes.” Hydrology 8 ( 2 ): 59. https://doi.org/10.3390/hydrology8020059.
Dimitriadis, P., A. Tegos, A. Oikonomou, V. Pagana, A. Koukouvinos, N. Mamassis, D. Koutsoyiannis, and A. Efstratiadis. 2016. “ Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping.” J. Hydrol. 534 ( Mar ): 478 – 492. https://doi.org/10.1016/j.jhydrol.2016.01.020.
Ding, Y., Y. Zhu, J. Feng, P. Zhang, and Z. Cheng. 2020. “ Interpretable spatio-temporal attention LSTM model for flood forecasting.” Neurocomputing 403 ( Aug ): 348 – 359. https://doi.org/10.1016/j.neucom.2020.04.110.
Do, H. X., S. Westra, and M. Leonard. 2017. “ A global-scale investigation of trends in annual maximum streamflow.” J. Hydrol. 552 ( Sep ): 28 – 43. https://doi.org/10.1016/j.jhydrol.2017.06.015.
Döll, P., T. Trautmann, D. Gerten, H. M. Schmied, S. Ostberg, F. Saaed, and C.-F. Schleussner. 2018. “ Risks for the global freshwater system at 1.5°C and 2°C global warming.” Environ. Res. Lett. 13 ( 4 ): 044038. https://doi.org/10.1088/1748-9326/aab792.
Donnelly, C., W. Greuell, J. Andersson, D. Gerten, G. Pisacane, P. Roudier, and F. Ludwig. 2017. “ Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level.” Clim. Change 143 ( 1 ): 13 – 26. https://doi.org/10.1007/s10584-017-1971-7.
Donratanapat, N., S. Samadi, J. M. Vidal, and S. S. Tabas. 2020. “ A national scale big data analytics pipeline to assess the potential impacts of flooding on critical infrastructures and communities.” Environ. Modell. Software 133 ( Nov ): 104828. https://doi.org/10.1016/j.envsoft.2020.104828.
Dottori, F., et al. 2018. “ Increased human and economic losses from river flooding with anthropogenic warming.” Nat. Clim. Change 8 ( 9 ): 781 – 786. https://doi.org/10.1038/s41558-018-0257-z.
Douglas, I. 2009. “ Climate change, flooding and food security in south Asia.” Food Secur. 1 ( 2 ): 127 – 136. https://doi.org/10.1007/s12571-009-0015-1.
Dudley, R. W., G. A. Hodgkins, M. McHale, M. J. Kolian, and B. Renard. 2017. “ Trends in snowmelt-related streamflow timing in the conterminous United States.” J. Hydrol. 547 ( Apr ): 208 – 221. https://doi.org/10.1016/j.jhydrol.2017.01.051.
Easterling, D. R., K. E. Kunkel, J. R. Arnold, T. Knutson, A. N. LeGrande, L. R. Leung, R. S. Vose, D. E. Waliser, and M. F. Wehner. 2017. “Precipitation change in the United States.” In Climate science special report: Fourth national climate assessment, Volume I, edited by D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, 207–230. Washington, DC: US Global Change Research Program.
El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobée. 2007. “ Generalized maximum likelihood estimators for the nonstationary generalized extreme value model.” Water Resour. Res. 43 ( 3 ): W03410. https://doi.org/10.1029/2005WR004545.
Emerton, R., H. L. Cloke, E. M. Stephens, E. Zsoter, S. J. Woolnough, and F. Pappenberger. 2017. “ Complex picture for likelihood of ENSO-driven flood hazard.” Nat. Commun. 8 ( 1 ): 14796. https://doi.org/10.1038/ncomms14796.
England, J. F., Jr., T. A. Cohn, B. A. Faber, J. R. Stedinger, W. O. Thomas Jr., A. G. Veilleux, J. E. Kiang, and R. R. Mason Jr. 2018. Guidelines for determining flood flow frequency—Bulletin 17C. Washington, DC : USGS.
Ezer, T., and L. P. Atkinson. 2014. “ Accelerated flooding along the US East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations.” Earth’s Future 2 ( 8 ): 362 – 382. https://doi.org/10.1002/2014EF000252.
Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru. 2016. “ More frequent intense and long-lived storms dominate the springtime trend in central US rainfall.” Nat. Commun. 7 ( 1 ): 13429. https://doi.org/10.1038/ncomms13429.
Fenton, J. D. 2019. “ Flood routing methods.” J. Hydrol. 570 ( Mar ): 251 – 264. https://doi.org/10.1016/j.jhydrol.2019.01.006.
Feyisa, G. L., H. Meilby, R. Fensholt, and S. R. Proud. 2014. “ Automated water extraction index: A new technique for surface water mapping using Landsat imagery.” Remote Sens. Environ. 140 ( Jan ): 23 – 35. https://doi.org/10.1016/j.rse.2013.08.029.
Field, C. B., and V. R. Barros. 2014. Climate change 2014—Impacts, adaptation and vulnerability: Regional aspects. Cambridge, UK : Cambridge University Press.
Flesch, T. K., and G. W. Reuter. 2012. “ WRF model simulation of two Alberta flooding events and the impact of topography.” J. Hydrometeorol. 13 ( 2 ): 695 – 708. https://doi.org/10.1175/JHM-D-11-035.1.
Fowler, H. J., et al. 2021. “ Anthropogenic intensification of short-duration rainfall extremes.” Nat. Rev. Earth Environ. 2 ( 2 ): 107 – 122. https://doi.org/10.1038/s43017-020-00128-6.
Frei, C., H. C. Davies, J. Gurtz, and C. Schär. 2000. “ Climate dynamics and extreme precipitation and flood events in Central Europe.” Integrated Assess. 1 ( 4 ): 281 – 300. https://doi.org/10.1023/A:1018983226334.
Fundel, F., S. Jörg-Hess, and M. Zappa. 2013. “ Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices.” Hydrol. Earth Syst. Sci. 17 ( 1 ): 395 – 407. https://doi.org/10.5194/hess-17-395-2013.
Ganguli, P., and B. Merz. 2019. “ Extreme coastal water levels exacerbate fluvial flood hazards in Northwestern Europe.” Sci. Rep. 9 ( 1 ): 13165. https://doi.org/10.1038/s41598-019-49822-6.
Ganguli, P., D. Paprotny, M. Hasan, A. Güntner, and B. Merz. 2020. “ Projected changes in compound flood hazard from riverine and coastal floods in Northwestern Europe.” Earth’s Future 8 ( 11 ): e2020EF001752.
Gebremedhin, E. T., L. Basco-Carrera, A. Jonoski, M. Iliffe, and H. Winsemius. 2020. “ Crowdsourcing and interactive modelling for urban flood management.” J. Flood Risk Manage. 13 ( 2 ): e12602. https://doi.org/10.1111/jfr3.12602.
Giustarini, L., R. Hostache, P. Matgen, G. J. Schumann, P. D. Bates, and D. C. Mason. 2012. “ A change detection approach to flood mapping in urban areas using TerraSAR-X.” IEEE Trans. Geosci. Remote Sens. 51 ( 4 ): 2417 – 2430. https://doi.org/10.1109/TGRS.2012.2210901.
Goodarzi, L., M. E. Banihabib, and A. Roozbahani. 2019. “ A decision-making model for flood warning system based on ensemble forecasts.” J. Hydrol. 573 ( Jun ): 207 – 219. https://doi.org/10.1016/j.jhydrol.2019.03.040.
Gornitz, V. M., R. C. Daniels, T. W. White, and K. R. Birdwell. 1994. “The development of a coastal risk assessment database: Vulnerability to sea-level rise in the US Southeast.” J. Coast. Res. 12 (1): 327–338.
Graf, W. L. 2006. “ Downstream hydrologic and geomorphic effects of large dams on American rivers.” Geomorphology 79 ( 3–4 ): 336 – 360. https://doi.org/10.1016/j.geomorph.2006.06.022.
Grayson, R., G. Blöschl, and I. Moore. 1995. “Distributed parameter hydrologic modelling using vector elevation data: THALES and TAPES-C.” In Computer models of watershed hydrology, 669–696. Littleton, CO: Water Resources Publications.
Griffis, V. W., and J. R. Stedinger. 2019. “Flood frequency analysis in the United States.” Chap. 7 in Applications of statistical distributions in hydrologic, edited by R. S. V. Teegavarapu, et al., 233–258. Reston, VA: ASCE.
Griffis, V. W., J. R. Stedinger, and T. A. Cohn. 2004. “ Log Pearson type 3 quantile estimators with regional skew information and low outlier adjustments.” Water Resour. Res. 40 ( 7 ): 1–17. https://doi.org/10.1029/2003WR002697.
Groisman, P., R. W. Knight, and T. R. Karl. 2001. “ Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century.” Bull. Am. Meteorol. Soc. 82 ( 2 ): 219 – 246. https://doi.org/10.1175/1520-0477(2001)082%3C0219:HPAHSI%3E2.3.CO;2.
Grothmann, T., and F. Reusswig. 2006. “ People at risk of flooding: Why some residents take precautionary action while others do not.” Nat. Hazards 38 ( 1 ): 101 – 120. https://doi.org/10.1007/s11069-005-8604-6.
Gupta, A., D. Niyogi, and U. C. Mohanty. 2018. “National network research program on urban climate for India.” In Proc., 10th Int. Conf. on Urban Climate/14th Symp. on the Urban Environment. New York: American Meteorological Society.
Guse, B., B. Merz, L. Wietzke, S. Ullrich, A. Viglione, and S. Vorogushyn. 2020. “ The role of flood wave superposition in the severity of large floods.” Hydrol. Earth Syst. Sci. 24 ( 4 ): 1633 – 1648. https://doi.org/10.5194/hess-24-1633-2020.
Haer, T., W. W. Botzen, and J. C. Aerts. 2019. “ Advancing disaster policies by integrating dynamic adaptive behaviour in risk assessments using an agent-based modelling approach.” Environ. Res. Lett. 14 ( 4 ): 044022. https://doi.org/10.1088/1748-9326/ab0770.
Hall, J., and D. Solomatine. 2008. “ A framework for uncertainty analysis in flood risk management decisions.” Int. J. River Basin Manage. 6 ( 2 ): 85 – 98. https://doi.org/10.1080/15715124.2008.9635339.
Han, D., L. Chan, and N. Zhu. 2007. “ Flood forecasting using support vector machines.” J. Hydroinf. 9 ( 4 ): 267 – 276. https://doi.org/10.2166/hydro.2007.027.
Han, S., and P. Coulibaly. 2017. “ Bayesian flood forecasting methods: A review.” J. Hydrol. 551 ( Aug ): 340 – 351. https://doi.org/10.1016/j.jhydrol.2017.06.004.
Haraguchi, M., and U. Lall. 2015. “ Flood risks and impacts: A case study of Thailand’s floods in 2011 and research questions for supply chain decision making.” Int. J. Disaster Risk Reduct. 14 ( Dec ): 256 – 272. https://doi.org/10.1016/j.ijdrr.2014.09.005.
Harrison, S., et al. 2018. “ Climate change and the global pattern of moraine-dammed glacial lake outburst floods.” Cryosphere 12 ( 4 ): 1195 – 1209. https://doi.org/10.5194/tc-12-1195-2018.
He, Z., X. Wen, H. Liu, and J. Du. 2014. “ A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region.” J. Hydrol. 509 ( Feb ): 379 – 386. https://doi.org/10.1016/j.jhydrol.2013.11.054.
Hecht, J. S., and R. M. Vogel. 2020. “ Updating urban design floods for changes in central tendency and variability using regression.” Adv. Water Resour. 136 ( Feb ): 103484. https://doi.org/10.1016/j.advwatres.2019.103484.
Hegdahl, T. J., K. Engeland, I. Steinsland, and A. Singleton. 2021. “ The benefits of pre-and postprocessing streamflow forecasts for an operational flood-forecasting system of 119 Norwegian catchments.” Hydrol. Earth Syst. Sci. Discuss. European Geophys. Union, 1 – 45. https://doi.org/10.5194/hess-2021-13, 2021.
Helbing, D. 2013. “ Globally networked risks and how to respond.” Nature 497 ( 7447 ): 51 – 59. https://doi.org/10.1038/nature12047.
Henonin, J., B. Russo, O. Mark, and P. Gourbesville. 2013. “ Real-time urban flood forecasting and modelling—A state of the art.” J. Hydroinf. 15 ( 3 ): 717 – 736. https://doi.org/10.2166/hydro.2013.132.
Henstra, D., A. Minano, and J. Thistlethwaite. 2019. “ Communicating disaster risk? An evaluation of the availability and quality of flood maps.” Nat. Hazards Earth Syst. Sci. 19 ( 1 ): 313 – 323. https://doi.org/10.5194/nhess-19-313-2019.
Herfort, B., S. Lautenbach, J. Porto de Albuquerque, J. Anderson, and A. Zipf. 2021. “ The evolution of humanitarian mapping within the OpenStreetMap community.” Sci. Rep. 11 ( 1 ): 3037. https://doi.org/10.1038/s41598-021-82404-z.
Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. “ Global flood risk under climate change.” Nat. Clim. Change 3 ( 9 ): 816 – 821. https://doi.org/10.1038/nclimate1911.
Hirmas, D. R., D. Giménez, A. Nemes, R. Kerry, N. A. Brunsell, and C. J. Wilson. 2018. “ Climate-induced changes in continental-scale soil macroporosity may intensify water cycle.” Nature 561 ( 7721 ): 100 – 103. https://doi.org/10.1038/s41586-018-0463-x.
Hirsch, R. M., and S. A. Archfield. 2015. “ Not higher but more often.” Nat. Clim. Change 5 ( 3 ): 198 – 199. https://doi.org/10.1038/nclimate2551.
Hirsch, R. M., and K. R. Ryberg. 2012. “ Has the magnitude of floods across the USA changed with global CO2 levels? ” Hydrol. Sci. J. 57 ( 1 ): 1 – 9. https://doi.org/10.1080/02626667.2011.621895.
Hodgkins, G. A., et al. 2017. “ Climate-driven variability in the occurrence of major floods across North America and Europe.” J. Hydrol. 552 ( Sep ): 704 – 717. https://doi.org/10.1016/j.jhydrol.2017.07.027.
Hodgkins, G. A., R. W. Dudley, S. A. Archfield, and B. Renard. 2019. “ Effects of climate, regulation, and urbanization on historical flood trends in the United States.” J. Hydrol. 573 ( Jun ): 697 – 709. https://doi.org/10.1016/j.jhydrol.2019.03.102.
Holguin, N., A. Mugica, and O. Ukar. 2021. “ How is climate change included in the implementation of the European flood directive? Analysis of the methodological approaches of different countries.” Water 13 ( 11 ): 1490. https://doi.org/10.3390/w13111490.
Hosking, J. R. M., and J. R. Wallis. 2005. Regional frequency analysis: An approach based on L-moments. Cambridge, UK : Cambridge University Press.
Hossain, F., et al. 2014. “ A promising radar altimetry satellite system for operational flood forecasting in flood-prone Bangladesh.” IEEE Geosci. Remote Sens. Mag. 2 ( 3 ): 27 – 36. https://doi.org/10.1109/MGRS.2014.2345414.
Hosseini, F. S., B. Choubin, A. Mosavi, N. Nabipour, S. Shamshirband, H. Darabi, and A. T. Haghighi. 2020. “ Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method.” Sci. Total Environ. 711 ( Apr ): 135161. https://doi.org/10.1016/j.scitotenv.2019.135161.
Hosseinzadehtalaei, P., H. Tabari, and P. Willems. 2020. “ Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe.” J. Hydrol. 590 ( Nov ): 125249. https://doi.org/10.1016/j.jhydrol.2020.125249.
Hu, R., F. Fang, C. C. Pain, and I. M. Navon. 2019a. “Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method.” J. Hydrol. 575 (Aug): 911–920. https://doi.org/10.1016/j.jhydrol.2019.05.087.
Hu, R., F. Fang, P. Salinas, C. C. Pain, N. S. Domingo, and O. Mark. 2019b. “Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method.” Adv. Water Resour. 123 (Jan): 173–188. https://doi.org/10.1016/j.advwatres.2018.11.011.
Hudson, P., W. W. Botzen, J. Poussin, and J. C. Aerts. 2019. “ Impacts of flooding and flood preparedness on subjective well-being: A monetisation of the tangible and intangible impacts.” J. Happiness Stud. 20 ( 2 ): 665 – 682. https://doi.org/10.1007/s10902-017-9916-4.
Hunt, J. C. R. 2002. “ Floods in a changing climate: A review.” Philos. Trans. R. Soc. London, Ser. A 360 ( 1796 ): 1531 – 1543.
Hurlbert, M., et al. 2019. “Risk management and decision making in relation to sustainable development.” In Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, edited by P. R. Shukla, et al. Geneva: Intergovernmental Panel on Climate Change.
Hurst, H. E. 1951. “ Long-term storage capacity of reservoirs.” Trans. Am. Soc. Civ. Eng. 116 ( 1 ): 770 – 799. https://doi.org/10.1061/TACEAT.0006518.
Iliopoulou, T., and D. Koutsoyiannis. 2019. “ Revealing hidden persistence in maximum rainfall records.” Hydrol. Sci. J. 64 ( 14 ): 1673 – 1689. https://doi.org/10.1080/02626667.2019.1657578.
Iliopoulou, T., and D. Koutsoyiannis. 2020. “ Projecting the future of rainfall extremes: Better classic than trendy.” J. Hydrol. 588 ( Sep ): 125005. https://doi.org/10.1016/j.jhydrol.2020.125005.
IPCC (Intergovernmental Panel on Climate Change). 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the intergovernmental panel on climate change. Cambridge, UK : Cambridge University Press.
IPCC (Intergovernmental Panel on Climate Change). 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, edited by C. B. Field, et al., 1132. Cambridge, UK: Cambridge University Press.
Ivancic, T. J., and S. B. Shaw. 2015. “ Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge.” Clim. Change 133 ( 4 ): 681 – 693. https://doi.org/10.1007/s10584-015-1476-1.
Jain, S., and U. Lall. 2001. “ Floods in a changing climate: Does the past represent the future? ” Water Resour. Res. 37 ( 12 ): 3193 – 3205. https://doi.org/10.1029/2001WR000495.
Jarvis, C. S. 1936. Floods in the United States: Magnitude and frequency. Washington, DC: US Government Printing Office.
Jha, A. K., R. Bloch, and J. Lamond. 2012. Cities and flooding: A guide to integrated urban flood risk management for the 21st century. Washington, DC : World Bank.
Jia, Y., G. Ni, Y. Kawahara, and T. Suetsugi. 2001. “ Development of WEP model and its application to an urban watershed.” Hydrol. Process. 15 ( 11 ): 2175 – 2194. https://doi.org/10.1002/hyp.275.
Jiang, T., B. Su, J. Huang, J. Zhai, J. Xia, H. Tao, Y. Wang, H. Sun, Y. Luo, and L. Zhang. 2020. “ Each 0.5°C of warming increases annual flood losses in China by more than US $60 billion.” Bull. Am. Meteorol. Soc. 101 ( 8 ): E1464 – E1474. https://doi.org/10.1175/BAMS-D-19-0182.1.
Joe, H., and D. Kurowicka, eds. 2011. Dependence modeling: Vine copula handbook. Hackensack, NJ : World Scientific.
Kalteh, A. M. 2013. “ Monthly river flow forecasting using artificial neural network and support vector regression models coupled with wavelet transform.” Comput. Geosci. 54 ( Apr ): 1 – 8. https://doi.org/10.1016/j.cageo.2012.11.015.
Kalteh, A. M. 2015. “ Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting.” Water Resour. Manage. 29 ( 4 ): 1283 – 1293. https://doi.org/10.1007/s11269-014-0873-y.
Kao, I.-F., Y. Zhou, L.-C. Chang, and F.-J. Chang. 2020. “ Exploring a long short-term memory based encoder-decoder framework for multi-step-ahead flood forecasting.” J. Hydrol. 583 ( Apr ): 124631. https://doi.org/10.1016/j.jhydrol.2020.124631.
Kasiviswanathan, K., J. He, K. Sudheer, and J.-H. Tay. 2016. “ Potential application of wavelet neural network ensemble to forecast streamflow for flood management.” J. Hydrol. 536 ( May ): 161 – 173. https://doi.org/10.1016/j.jhydrol.2016.02.044.
Katopodes, N. D., and T. Strelkoff. 1978. “ Computing two-dimensional dam-break flood waves.” J. Hydraul. Div. 104 ( 9 ): 1269 – 1288. https://doi.org/10.1061/JYCEAJ.0005062.
Kavvas, M., Z. Chen, C. Dogrul, J. Yoon, N. Ohara, L. Liang, H. Aksoy, M. Anderson, J. Yoshitani, and K. Fukami. 2004. “ Watershed environmental hydrology (WEHY) model based on upscaled conservation equations: Hydrologic module.” J. Hydrol. Eng. 9 ( 6 ): 450 – 464. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(450).
Ke, Q., X. Tian, J. Bricker, Z. Tian, G. Guan, H. Cai, X. Huang, H. Yang, and J. Liu. 2020. “ Urban pluvial flooding prediction by machine learning approaches—A case study of Shenzhen city, China.” Adv. Water Resour. 145 ( Nov ): 103719. https://doi.org/10.1016/j.advwatres.2020.103719.
Kellner, O., D. Niyogi, M. Lei, and A. Kumar. 2012. “ The role of anomalous soil moisture on the inland reintensification of Tropical Storm Erin (2007).” Nat. Hazards 63 ( 3 ): 1573 – 1600. https://doi.org/10.1007/s11069-011-9966-6.
Khajehei, S., A. Ahmadalipour, W. Shao, and H. Moradkhani. 2020. “ A place-based assessment of flash flood hazard and vulnerability in the contiguous United States.” Sci. Rep. 10 ( 1 ): 1 – 12. https://doi.org/10.1038/s41598-019-57349-z.
Khan, M. M., A. Y. Shamseldin, B. W. Melville, and M. Shoaib. 2015. “ Stratification of NWP forecasts for medium-range ensemble streamflow forecasting.” J. Hydrol. Eng. 20 ( 7 ): 04014076. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001075.
Khedun, C. P., A. K. Mishra, J. D. Bolten, H. K. Beaudoing, R. A. Kaiser, J. R. Giardino, and V. P. Singh. 2012. “ Understanding changes in water availability in the Rio Grande/Río Bravo del Norte basin under the influence of large-scale circulation indices using the Noah land surface model.” J. Geophys. Res.: Atmospheres 117 ( D5 ): 06019005. https://doi.org/10.1029/2011JD016590.
Khedun, C. P., V. P. Singh, and A. R. Byrd. 2019. “ Joint probability of extreme streamflow and its day of occurrence.” J. Hydrol. Eng. 24 ( 8 ): 06019005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001813.
Khosravi, K., B. T. Pham, K. Chapi, A. Shirzadi, H. Shahabi, I. Revhaug, I. Prakash, and D. T. Bui. 2018. “ A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran.” Sci. Total Environ. 627 ( Jun ): 744 – 755. https://doi.org/10.1016/j.scitotenv.2018.01.266.
Kim, S., S. Lee, T. W. Kim, and D. Kim. 2019. “ Estimation of flooded area using satellite imagery and DSM Terrain data.” J. Korean Soc. Hazard Mitigation 19 ( 7 ): 471 – 483. https://doi.org/10.9798/KOSHAM.2019.19.7.471.
Kishtawal, C. M., D. Niyogi, M. Tewari, R. A. Pielke, and J. M. Shepherd. 2010. “ Urbanization signature in the observed heavy rainfall climatology over India.” Int. J. Climatol. 30 ( 13 ): 1908 – 1916.
Kisi, O. 2015. “ Streamflow forecasting and estimation using least square support vector regression and adaptive neuro-fuzzy embedded fuzzy c-means clustering.” Water Resour. Manage. 29 ( 14 ): 5109 – 5127. https://doi.org/10.1007/s11269-015-1107-7.
Kisi, O., and M. Cimen. 2011. “ A wavelet-support vector machine conjunction model for monthly streamflow forecasting.” J. Hydrol. 399 ( 1–2 ): 132 – 140. https://doi.org/10.1016/j.jhydrol.2010.12.041.
Kite, G. W. 1977. Frequency and risk analyses in hydrology. Littleton, CO: Water Resources Publications.
Koks, E. 2018. “ Moving flood risk modelling forwards.” Nat. Clim. Change 8 ( 7 ): 561 – 562. https://doi.org/10.1038/s41558-018-0185-y.
Kollat, J. B., J. R. Kasprzyk, W. O. Thomas, A. C. Miller, and D. Divoky. 2012. “ Estimating the impacts of climate change and population growth on flood discharges in the United States.” J. Water Resour. Plann. Manage. 138 ( 5 ): 442 – 452. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000233.
Konapala, G., A. K. Mishra, Y. Wada, and M. E. Mann. 2020. “ Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation.” Nat. Commun. 11 ( 1 ): 3044. https://doi.org/10.1038/s41467-020-16757-w.
Kossin, J. P., et al. 2017. Chap. 9: Extreme storms. Climate science special report: Fourth national climate assessment, volume I. Edited by D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, and T. K. Maycock, 257–276. Washington, DC: US Global Change Research Program.
Koutsoyiannis, D. 2020a. “Revisiting the global hydrological cycle: Is it intensifying?” Hydrol. Earth Syst. Sci. 24 (8): 3899–3932. https://doi.org/10.5194/hess-24-3899-2020.
Koutsoyiannis, D. 2020b. “Stochastics of hydroclimatic extremes—A cool look at risk” Accessed December 20, 2020. http://itia.ntua.gr/2000/.
Koutsoyiannis, D., and A. Montanari. 2015. “ Negligent killing of scientific concepts: The stationarity case.” Hydrol. Sci. J. 60 ( 7–8 ): 1174 – 1183. https://doi.org/10.1080/02626667.2014.959959.
Kouwen, N. 1988. “ WATFLOOD: A micro-computer based flood forecasting system based on real-time weather radar.” Can. Water Resour. J. 13 ( 1 ): 62 – 77. https://doi.org/10.4296/cwrj1301062.
Krajewski, W. F., et al. 2017. “ Real-time flood forecasting and information system for the State of Iowa.” Bull. Am. Meteorol. Soc. 98 ( 3 ): 539 – 554. https://doi.org/10.1175/BAMS-D-15-00243.1.
Kreibich, H., S. Christenberger, and R. Schwarze. 2011. “ Economic motivation of households to undertake private precautionary measures against floods.” Nat. Hazards Earth Syst. Sci. 11 ( 2 ): 309 – 321. https://doi.org/10.5194/nhess-11-309-2011.
Kreibich, H., G. Di Baldassarre, S. Vorogushyn, J. C. Aerts, H. Apel, G. T. Aronica, K. Arnbjerg-Nielsen, L. M. Bouwer, P. Bubeck, and T. Caloiero. 2017. “ Adaptation to flood risk: Results of international paired flood event studies.” Earth’s Future 5 ( 10 ): 953 – 965. https://doi.org/10.1002/2017EF000606.
Krieger, K. 2013. “ The limits and variety of risk-based governance: The case of flood management in Germany and England.” Regul. Governance 7 ( 2 ): 236 – 257. https://doi.org/10.1111/rego.12009.
Kron, W., P. Löw, and Z. W. Kundzewicz. 2019. “ Changes in risk of extreme weather events in Europe.” Environ. Sci. Policy 100 ( Oct ): 74 – 83. https://doi.org/10.1016/j.envsci.2019.06.007.
Krysanova, V., F. F. Hattermann, and Z. W. Kundzewicz. 2020. “ How evaluation of hydrological models influences results of climate impact assessment—An editorial.” Clim. Change 163 ( 3 ): 1121 – 1141. https://doi.org/10.1007/s10584-020-02927-8.
Kubal, C., D. Haase, V. Meyer, and S. Scheuer. 2009. “ Integrated urban flood risk assessment—Adapting a multicriteria approach to a city.” Nat. Hazards Earth Syst. Sci. 9 ( 6 ): 1881 – 1895. https://doi.org/10.5194/nhess-9-1881-2009.
Kumar, D. N., K. S. Raju, and T. Sathish. 2004. “ River flow forecasting using recurrent neural networks.” Water Resour. Manage. 18 ( 2 ): 143 – 161. https://doi.org/10.1023/B:WARM.0000024727.94701.12.
Kumar, D. N., and T. V. Reshmidevi. 2013. “ Remote sensing applications in water resources.” J. Indian Inst. Sci. 93 ( 2 ): 163 – 188.
Kundzewicz, Z., J. Huang, I. Pinskwar, B. Su, M. Szwed, and T. Jiang. 2020. “Climate variability and floods in China—A review.” Earth Sci. Rev. 211: 103434. https://doi.org/10.1016/j.earscirev.2020.103434.
Kundzewicz, Z. W., et al. 2017. “ Differences in flood hazard projections in Europe—Their causes and consequences for decision making.” Hydrol. Sci. J. 62 ( 1 ): 1 – 14.
Kundzewicz, Z. W., I. Pińskwar, and G. R. Brakenridge. 2018. “ Changes in river flood hazard in Europe: A review.” Hydrol. Res. 49 ( 2 ): 294 – 302. https://doi.org/10.2166/nh.2017.016.
Kundzewicz, Z. W., M. Szwed, and I. Pińskwar. 2019. “ Climate variability and floods—A global review.” Water 11 ( 7 ): 1399. https://doi.org/10.3390/w11071399.
Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith. 2010. “ Recent increases in US heavy precipitation associated with tropical cyclones.” Geophys. Res. Lett. 37 ( 24 ): L24706. https://doi.org/10.1029/2010GL045164.
Lal, P., A. Prakash, A. Kumar, P. K. Srivastava, P. Saikia, A. C. Pandey, P. Srivastava, and M. L. Khan. 2020. “ Evaluating the 2018 extreme flood hazard events in Kerala, India.” Rem. Sensing Lett. 11 ( 5 ): 436 – 445. https://doi.org/10.1080/2150704X.2020.1730468.
Lamontagne, J., J. Stedinger, X. Yu, C. Whealton, and Z. Xu. 2016. “ Robust flood frequency analysis: Performance of EMA with multiple Grubbs-Beck outlier tests.” Water Resour. Res. 52 ( 4 ): 3068 – 3084. https://doi.org/10.1002/2015WR018093.
Lane, S. N. 2017. “ Natural flood management.” Wiley Interdiscip. Rev.: Water 4 ( 3 ): e1211.
Latt, Z. Z., and H. Wittenberg. 2014. “ Improving flood forecasting in a developing country: A comparative study of stepwise multiple linear regression and artificial neural network.” Water Resour. Manage. 28 ( 8 ): 2109 – 2128. https://doi.org/10.1007/s11269-014-0600-8.
Le, X.-H., H. V. Ho, G. Lee, and S. Jung. 2019. “ Application of long short-term memory (LSTM) neural network for flood forecasting.” Water 11 ( 7 ): 1387. https://doi.org/10.3390/w11071387.
Lehner, B., P. Döll, J. Alcamo, T. Henrichs, and F. Kaspar. 2006. “ Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis.” Clim. Change 75 ( 3 ): 273 – 299. https://doi.org/10.1007/s10584-006-6338-4.
Leonard, M., S. Westra, A. Phatak, M. Lambert, B. van den Hurk, K. McInnes, J. Risbey, S. Schuster, D. Jakob, and M. Stafford-Smith. 2014. “ A compound event framework for understanding extreme impacts.” WIREs Clim. Change 5 ( 1 ): 113 – 128. https://doi.org/10.1002/wcc.252.
Leopold, L. B., and T. J. Maddock. 1954. The flood control controversy. Baltimore: Lippincott Williams & Wilkins.
Li, D., Z. N. Fang, and P. B. Bedient. 2021. Flood early warning systems under changing climate and extreme events. In Climate change and extreme events, 83–103. Amsterdam, Netherlands: Elsevier.
Li, J., Y. Chen, H. Wang, J. Qin, J. Li, and S. Chiao. 2017. “ Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model.” Hydrol. Earth Syst. Sci. 21 ( 2 ): 1279 – 1294. https://doi.org/10.5194/hess-21-1279-2017.
Li, L., A. M. Collins, A. Cheshmehzangi, and F. K. S. Chan. 2020. “ Identifying enablers and barriers to the implementation of the Green Infrastructure for urban flood management: A comparative analysis of the UK and China.” Urban For. Urban Greening 54 ( Oct ): 126770. https://doi.org/10.1016/j.ufug.2020.126770.
Liang, J., and D. Liu. 2020. “ A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery.” ISPRS J. Photogramm. Remote Sens. 159 ( Jan ): 53 – 62. https://doi.org/10.1016/j.isprsjprs.2019.10.017.
Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges. 1994. “ A simple hydrologically based model of land surface water and energy fluxes for general circulation models.” J. Geophys. Res.: Atmos. 99 ( D7 ): 14415 – 14428. https://doi.org/10.1029/94JD00483.
Lin, G. F., Y. C. Chou, and M. C. Wu. 2013. “ Typhoon flood forecasting using integrated two-stage support vector machine approach.” J. Hydrol. 486 ( Apr ): 334 – 342. https://doi.org/10.1016/j.jhydrol.2013.02.012.
Lin, G.-F., and L.-H. Chen. 2004. “ A non-linear rainfall-runoff model using radial basis function network.” J. Hydrol. 289 ( 1–4 ): 1 – 8. https://doi.org/10.1016/j.jhydrol.2003.10.015.
Liu, J., and D. Niyogi. 2019. “ Meta-analysis of urbanization impact on rainfall modification.” Sci. Rep. 9 ( 1 ): 7301. https://doi.org/10.1038/s41598-019-42494-2.
Liu, Z., P. Zhou, G. Chen, and L. Guo. 2014. “ Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting.” J. Hydrol. 519 ( Nov ): 2822 – 2831. https://doi.org/10.1016/j.jhydrol.2014.06.050.
Liu, Z., P. Zhou, and Y. Zhang. 2015. “ A probabilistic wavelet–support vector regression model for streamflow forecasting with rainfall and climate information input.” J. Hydrometeorol. 16 ( 5 ): 2209 – 2229. https://doi.org/10.1175/JHM-D-14-0210.1.
Loukas, A., and L. Vasiliades. 2014. “ Streamflow simulation methods for ungauged and poorly gauged watersheds.” Nat. Hazards Earth Syst. Sci. 14 ( 7 ): 1641 – 1661. https://doi.org/10.5194/nhess-14-1641-2014.
Lü, M., S.-J. Wu, J. Chen, C. Chen, Z. Wen, and Y. Huang. 2018. “ Changes in extreme precipitation in the Yangtze River basin and its association with global mean temperature and ENSO.” Int. J. Climatol. 38 ( 4 ): 1989 – 2005. https://doi.org/10.1002/joc.5311.
Lumbroso, D. 2020. “ Flood risk management in Africa.” J. Flood Risk Manage. 13 ( 3 ): e12612. https://doi.org/10.1111/jfr3.12612.
Lun, D., S. Fischer, A. Viglione, and G. Blöschl. 2020. “ Detecting flood-rich and flood-poor periods in annual peak discharges across Europe.” Water Resour. Res. 56 ( 7 ): e2019WR026575. https://doi.org/10.1029/2019WR026575.
Madsen, H., D. Lawrence, M. Lang, M. Martinkova, and T. Kjeldsen. 2013. A review of applied methods in Europe for flood-frequency analysis in a changing environment. London: Centre for Ecology & Hydrology.
Madsen, H., D. Lawrence, M. Lang, M. Martinkova, and T. R. Kjeldsen. 2014. “ Review of trend analysis and climate change projections of extreme precipitation and floods in Europe.” J. Hydrol. 519 ( Nov ): 3634 – 3650. https://doi.org/10.1016/j.jhydrol.2014.11.003.
Maity, R., and D. Nagesh Kumar. 2008. “ Basin-scale stream-flow forecasting using the information of large-scale atmospheric circulation phenomena.” Hydrol. Processes: Int. J. 22 ( 5 ): 643 – 650. https://doi.org/10.1002/hyp.6630.
Mallakpour, I., and G. Villarini. 2015. “ The changing nature of flooding across the central United States.” Nat. Clim. Change 5 ( 3 ): 250 – 254. https://doi.org/10.1038/nclimate2516.
Mangini, W., A. Viglione, J. Hall, Y. Hundecha, S. Ceola, A. Montanari, M. Rogger, J. L. Salinas, I. Borzì, and J. Parajka. 2018. “ Detection of trends in magnitude and frequency of flood peaks across Europe.” Hydrol. Sci. J. 63 ( 4 ): 493 – 512. https://doi.org/10.1080/02626667.2018.1444766.
Marsooli, R., N. Lin, K. Emanuel, and K. Feng. 2019. “ Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns.” Nat. Commun. 10 ( 1 ): 3785. https://doi.org/10.1038/s41467-019-11755-z.
Martinis, S., J. Kersten, and A. Twele. 2015. “ A fully automated TerraSAR-X based flood service.” ISPRS J. Photogramm. Remote Sens. 104 ( Jun ): 203 – 212. https://doi.org/10.1016/j.isprsjprs.2014.07.014.
Martins, E. S., and J. R. Stedinger. 2001. “ Historical information in a generalized maximum likelihood framework with partial duration and annual maximum series.” Water Resour. Res. 37 ( 10 ): 2559 – 2567. https://doi.org/10.1029/2000WR000009.
Matgen, P., R. Hostache, G. Schumann, L. Pfister, L. Hoffmann, and H. H. G. Savenije. 2011. “ Towards an automated SAR-based flood monitoring system: Lessons learned from two case studies.” Phys. Chem. Earth 36 ( 7–8 ): 241 – 252. https://doi.org/10.1016/j.pce.2010.12.009.
Maussion, F., D. Scherer, R. Finkelnburg, J. Richters, W. Yang, and T. Yao. 2011. “ WRF simulation of a precipitation event over the Tibetan Plateau, China—An assessment using remote sensing and ground observations.” Hydrol. Earth Syst. Sci. 15 ( 6 ): 1795 – 1817. https://doi.org/10.5194/hess-15-1795-2011.
McFeeters, S. K. 1996. “ The use of the normalized difference water index (NDWI) in the delineation of open water features.” Int. J. Remote Sens. 17 ( 7 ): 1425 – 1432. https://doi.org/10.1080/01431169608948714.
Merwade, V., L. Yeghiazarian, S. Arumugam, X. Cai, A. Shepherd, M. Johnson, T. Hahmann, S. Saksena, P. Singhofen, and M. S. Riasi. 2020. “The urban flooding open knowledge network: Delivering flood information to anyone, anytime anywhere.” In Vol. 2020 of Proc., AGU Fall Meeting Abstracts. New York: AGU Fall Meeting Abstracts.
Merz, B., et al. 2014. “ Floods and climate: Emerging perspectives for flood risk assessment and management.” Nat. Hazards Earth Syst. Sci. 14 ( 7 ): 1921 – 1942. https://doi.org/10.5194/nhess-14-1921-2014.
Merz, B., et al. 2021. “ Causes, impacts and patterns of disastrous river floods.” Nat. Rev. Earth Environ. 2 ( 9 ): 592 – 609.
Merz, B., J. Hall, M. Disse, and A. Schumann. 2010. “ Fluvial flood risk management in a changing world.” Nat. Hazards Earth Syst. Sci. 10 ( 3 ): 509 – 527. https://doi.org/10.5194/nhess-10-509-2010.
Merz, B., C. Kuhlicke, M. Kunz, M. Pittore, A. Babeyko, D. N. Bresch, D. I. Domeisen, F. Feser, I. Koszalka, and H. Kreibich. 2020. “ Impact forecasting to support emergency management of natural hazards.” Rev. Geophys. 58 ( 4 ): e2020RG000704. https://doi.org/10.1029/2020RG000704.
Merz, B., S. Vorogushyn, U. Lall, A. Viglione, and G. Blöschl. 2015. “ Charting unknown waters—On the role of surprise in flood risk assessment and management.” Water Resour. Res. 51 ( 8 ): 6399 – 6416. https://doi.org/10.1002/2015WR017464.
Merz, R., and G. Blöschl. 2003. “ A process typology of regional floods.” Water Resour. Res. 39 ( 12 ): 1340. https://doi.org/10.1029/2002WR001952.
Milly, P., J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P. Lettenmaier, and R. J. Stouffer. 2008. “ Stationarity is dead: Whither water management? ” Earth 4 : 20.
Miniussi, A., G. Villarini, and M. Marani. 2020. “ Analyses through the metastatistical extreme value distribution identify contributions of tropical cyclones to rainfall extremes in the eastern United States.” Geophys. Res. Lett. 47 ( 7 ): e2020GL087238. https://doi.org/10.1029/2020GL087238.
Mirza, M. M. Q. 2011. “ Climate change, flooding in South Asia and implications.” Reg. Environ. Change 11 ( S1 ): 95 – 107. https://doi.org/10.1007/s10113-010-0184-7.
Mishra, A., A. Alnahit, and B. Campbell. 2021. “ Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis.” J. Hydrol. 596 ( May ): 125707. https://doi.org/10.1016/j.jhydrol.2020.125707.
Mishra, A. K., V. P. Singh, and M. Özger. 2011. “ Seasonal streamflow extremes in Texas river basins: Uncertainty, trends, and teleconnections.” J. Geophys. Res.: Atmospheres 116 ( D8 ): 1–28. https://doi.org/10.1029/2010JD014597.
Moftakhari, H. R., A. AghaKouchak, B. F. Sanders, M. Allaire, and R. A. Matthew. 2018. “ What is nuisance flooding? Defining and monitoring an emerging challenge.” Water Resour. Res. 54 ( 7 ): 4218 – 4227. https://doi.org/10.1029/2018WR022828.
Moftakhari, H. R., G. Salvadori, A. AghaKouchak, B. F. Sanders, and R. A. Matthew. 2017. “ Compounding effects of sea level rise and fluvial flooding.” Proc. Natl. Acad. Sci. 114 ( 37 ): 9785 – 9790. https://doi.org/10.1073/pnas.1620325114.
Mohammed, K., A. K. M. S. Islam, G. M. T. Islam, L. Alfieri, M. J. U. Khan, S. K. Bala, and M. K. Das. 2018. “ Future floods in Bangladesh under 1.5°C, 2°C, and 4°C global warming scenarios.” J. Hydrol. Eng. 23 ( 12 ): 04018050. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001705.
Mohanty, B. P., M. H. Cosh, V. Lakshmi, and C. Montzka. 2017. “ Soil moisture remote sensing: State-of-the-science.” Vadose Zone J. 16 ( 1 ): vzj2016.10.0105. https://doi.org/10.2136/vzj2016.10.0105.
Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis. 1996. “ The ECMWF ensemble prediction system: Methodology and validation.” Q. J. R. Meteorol. Soc. 122 ( 529 ): 73 – 119. https://doi.org/10.1002/qj.49712252905.
Mondal, A., and P. P. Mujumdar. 2016. “ Detection of change in flood return levels under global warming.” J. Hydrol. Eng. 21 ( 8 ): 04016021. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001326.
Mondal, S., A. K. Mishra, and L. R. Leung. 2020. “ Spatiotemporal characteristics and propagation of summer extreme precipitation events over United States: A complex network analysis.” Geophys. Res. Lett. 47 ( 15 ): e2020GL088185. https://doi.org/10.1029/2020GL088185.
Montanari, A., and D. Koutsoyiannis. 2014. “ Modeling and mitigating natural hazards: Stationarity is immortal! ” Water Resour. Res. 50 ( 12 ): 9748 – 9756. https://doi.org/10.1002/2014WR016092.
Morrison, A., C. J. Westbrook, and B. F. Noble. 2018. “ A review of the flood risk management governance and resilience literature.” J. Flood Risk Manage. 11 ( 3 ): 291 – 304. https://doi.org/10.1111/jfr3.12315.
Mosavi, A., P. Ozturk, and K. Chau. 2018. “ Flood prediction using machine learning models: Literature review.” Water 10 ( 11 ): 1536. https://doi.org/10.3390/w10111536.
Mote, P. W. 2006. “ Climate-driven variability and trends in mountain snowpack in Western North America.” J. Clim. 19 ( 23 ): 6209 – 6220. https://doi.org/10.1175/JCLI3971.1.
Mujumdar, P., M. M. Kumar, K. S. Raju, N. Umamahesh, R. Valsalam, G. S. Reddy, and D. Niyogi. 2017. Integrated urban flood management in India–technology driven solutions. New Delhi, India: Government of India.
Mukerji, A., C. Chatterjee, and N. S. Raghuwanshi. 2009. “ Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models.” J. Hydrol. Eng. 14 ( 6 ): 647 – 652. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000040.
Mukherjee, S., S. Aadhar, D. Stone, and V. Mishra. 2018. “ Increase in extreme precipitation events under anthropogenic warming in India.” Weather Clim. Extremes 20 ( Jun ): 45 – 53. https://doi.org/10.1016/j.wace.2018.03.005.
Mukherjee, S., and A. K. Mishra. 2021. “ Cascading effect of meteorological forcing on extreme precipitation events: Role of atmospheric rivers in southeastern US.” J. Hydrol. 601 ( Oct ): 126641. https://doi.org/10.1016/j.jhydrol.2021.126641.
Musselman, K. N., F. Lehner, K. Ikeda, M. P. Clark, A. F. Prein, C. Liu, M. Barlage, and R. Rasmussen. 2018. “ Projected increases and shifts in rain-on-snow flood risk over western North America.” Nat. Clim. Change 8 ( 9 ): 808 – 812. https://doi.org/10.1038/s41558-018-0236-4.
Myers, V. A. 1969. “The estimation of extreme precipitation as the basis for design floods—Resume of practice in the United States.” In Proc., Leningrad Symp. on Floods and their Computation, August 1967. Wallingford, UK: International Association of Scientific Hydrology.
Nair, U. S., et al. 2019. “ Influence of land cover and soil moisture based brown ocean effect on an extreme rainfall event from a Louisiana gulf coast tropical system.” Sci. Rep. 9 ( 1 ): 17136. https://doi.org/10.1038/s41598-019-53031-6.
Najibi, N., N. Devineni, and M. Lu. 2017. “ Hydroclimate drivers and atmospheric teleconnections of long duration floods: An application to large reservoirs in the Missouri River Basin.” Adv. Water Resour. 100 ( Feb ): 153 – 167. https://doi.org/10.1016/j.advwatres.2016.12.004.
Nanditha, J. S., and V. Mishra. 2021. “ On the need of ensemble flood forecast in India.” Water Secur. 12 ( Apr ): 100086. https://doi.org/10.1016/j.wasec.2021.100086.
National Research Council. 2013. Levees and the national flood insurance program: Improving policies and practices. Washington, DC : The National Academies Press. https://doi.org/10.17226/18309.
Nayak, P., K. Sudheer, D. Rangan, and K. Ramasastri. 2005. “ Short-term flood forecasting with a neurofuzzy model.” Water Resour. Res. 41 ( 4 ): W04004. https://doi.org/10.1029/2004WR003562.
Nelson, R. B. 2006. An introduction to copulas. 2nd ed. New York : Springer.
Nied, M., Y. Hundecha, and B. Merz. 2013. “ Flood-initiating catchment conditions: A spatio-temporal analysis of large-scale soil moisture patterns in the Elbe River basin.” Hydrol. Earth Syst. Sci. 17 ( 4 ): 1401 – 1414. https://doi.org/10.5194/hess-17-1401-2013.
Nkwunonwo, U. C., M. Whitworth, and B. Baily. 2020. “ A review of the current status of flood modelling for urban flood risk management in the developing countries.” Sci. Afr. 7 ( Mar ): e00269. https://doi.org/10.1016/j.sciaf.2020.e00269.
Nobre, G. G., B. Jongman, J. Aerts, and P. J. Ward. 2017. “ The role of climate variability in extreme floods in Europe.” Environ. Res. Lett. 12 ( 8 ): 084012. https://doi.org/10.1088/1748-9326/aa7c22.
Ohki, M., K. Yamamoto, T. Tadono, and K. Yoshimura. 2020. “ Automated processing for flood area detection using ALOS-2 and hydrodynamic simulation data.” Remote Sens. 12 ( 17 ): 2709. https://doi.org/10.3390/rs12172709.
Okhrin, O., and A. Ristig. 2014. “ Hierarchical Archimedean copulae: The HAC package.” J. Stat. Software 58 ( Jun ): 1 – 20. https://doi.org/10.18637/jss.v058.i04.
Oliveira, E. R., L. Disperati, L. Cenci, L. Gomes Pereira, and F. L. Alves. 2019. “ Multi-index image differencing method (MINDED) for flood extent estimations.” Remote Sens. 11 ( 11 ): 1305. https://doi.org/10.3390/rs11111305.
Olsen, J. R. 2006. “ Climate change and floodplain management in the United States.” Clim. Change 76 ( 3 ): 407 – 426. https://doi.org/10.1007/s10584-005-9020-3.
Olsen, J. R., J. R. Stedinger, N. C. Matalas, and E. Z. Stakhiv. 1999. “ Climate variability and flood frequency estimation for the Upper Mississippi and Lower Missouri Rivers.” JAWRA J. Am. Water Resour. Assoc. 35 ( 6 ): 1509 – 1523. https://doi.org/10.1111/j.1752-1688.1999.tb04234.x.
O’Sullivan, J. J., R. A. Bradford, M. Bonaiuto, S. De Dominicis, P. Rotko, J. Aaltonen, K. Waylen, and S. J. Langan. 2012. “ Enhancing flood resilience through improved risk communications.” Nat. Hazards Earth Syst. Sci. 12 ( 7 ): 2271 – 2282. https://doi.org/10.5194/nhess-12-2271-2012.
Oueslati, W., S. Alvanides, and G. Garrod. 2015. “ Determinants of urban sprawl in European cities.” Urban Stud. 52 ( 9 ): 1594 – 1614. https://doi.org/10.1177/0042098015577773.
Ozturk, U., D. Wendi, I. Crisologo, A. Riemer, A. Agarwal, K. Vogel, J. A. López-Tarazón, and O. Korup. 2018. “ Rare flash floods and debris flows in southern Germany.” Sci. Total Environ. 626 ( Jun ): 941 – 952. https://doi.org/10.1016/j.scitotenv.2018.01.172.
Papaioannou, G., L. Vasiliades, A. Loukas, and G. T. Aronica. 2017. “ Probabilistic flood inundation mapping at ungauged streams due to roughness coefficient uncertainty in hydraulic modelling.” Adv. Geosci. 44 ( Apr ): 23 – 34. https://doi.org/10.5194/adgeo-44-23-2017.
Papalexiou, S. M., and A. Montanari. 2019. “ Global and regional increase of precipitation extremes under global warming.” Water Resour. Res. 55 ( 6 ): 4901 – 4914.
Pappenberger, F., K. Beven, M. Horritt, and S. Blazkova. 2005. “ Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations.” J. Hydrol. 302 ( 1 ): 46 – 69. https://doi.org/10.1016/j.jhydrol.2004.06.036.
Pappenberger, F., H. L. Cloke, G. Balsamo, T. Ngo-Duc, and T. Oki. 2010. “ Global runoff routing with the hydrological component of the ECMWF NWP system.” Int. J. Climatol. 30 ( 14 ): 2155 – 2174. https://doi.org/10.1002/joc.2028.
Pappenberger, F., H. L. Cloke, D. J. Parker, F. Wetterhall, D. S. Richardson, and J. Thielen. 2015. “ The monetary benefit of early flood warnings in Europe.” Environ. Sci. Policy 51 ( Aug ): 278 – 291. https://doi.org/10.1016/j.envsci.2015.04.016.
Paprotny, D., A. Sebastian, O. Morales-Nápoles, and S. N. Jonkman. 2018. “ Trends in flood losses in Europe over the past 150 years.” Nat. Commun. 9 ( 1 ): 1 – 12. https://doi.org/10.1038/s41467-018-04253-1.
Park, D., and M. Markus. 2014. “ Analysis of a changing hydrologic flood regime using the variable infiltration capacity model.” J. Hydrol. 515 ( Jul ): 267 – 280. https://doi.org/10.1016/j.jhydrol.2014.05.004.
Parry, M. L., O. Canziani, J. Palutikof, P. Van der Linden, and C. Hanson. 2007. Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC. Cambridge, UK : Cambridge University Press.
Patel, P., S. Ghosh, A. Kaginalkar, S. Islam, and S. Karmakar. 2019. “ Performance evaluation of WRF for extreme flood forecasts in a coastal urban environment.” Atmos. Res. 223 ( Jul ): 39 – 48. https://doi.org/10.1016/j.atmosres.2019.03.005.
Patel, P., S. Karmakar, S. Ghosh, and D. Niyogi. 2020. “ Improved simulation of very heavy rainfall events by incorporating WUDAPT urban land use/land cover in WRF.” Urban Clim. 32 ( Jun ): 100616. https://doi.org/10.1016/j.uclim.2020.100616.
Pathiraja, S., S. Westra, and A. Sharma. 2012. “ Why continuous simulation? The role of antecedent moisture in design flood estimation.” Water Resour. Res. 48 ( 6 ): 6534. https://doi.org/10.1029/2011WR010997.
Pekel, J. F., A. Cottam, N. Gorelick, and A. S. Belward. 2016. “ High-resolution mapping of global surface water and its long-term changes.” Nature 540 ( 7633 ): 418 – 422. https://doi.org/10.1038/nature20584.
Peleg, N., F. Blumensaat, P. Molnar, S. Fatichi, and P. Burlando. 2017. “ Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling.” Hydrol. Earth Syst. Sci. 21 ( 3 ): 1559 – 1572. https://doi.org/10.5194/hess-21-1559-2017.
Penning-Rowsell, E. C., and J. Pardoe. 2012a. “Who benefits and who loses from flood risk reduction?” Environ. Plann. C: Gov. Policy 30 (3): 448–466. https://doi.org/10.1068/c10208.
Penning-Rowsell, E. C., and J. Pardoe. 2012b. “Who loses if flood risk is reduced: Should we be concerned?” Area 44 (2): 152–159.
Pham, B. T., et al. 2020. “ A comparative study of kernel logistic regression, radial basis function classifier, multinomial Naïve Bayes, and logistic model tree for flash flood susceptibility mapping.” Water 12 ( 1 ): 239. https://doi.org/10.3390/w12010239.
Pielke, R. A., Sr., et al. 2011. “ Land use/land cover changes and climate: Modeling analysis and observational evidence.” Wiley Interdiscip. Rev. Clim. Change 2 ( 6 ): 828 – 850.
Pizarro, A., S. F. Dal Sasso, M. T. Perks, and S. Manfreda. 2020. “ Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow.” Hydrol. Earth Syst. Sci. 24 ( 11 ): 5173 – 5185. https://doi.org/10.5194/hess-24-5173-2020.
Popadić, S. N. 2021. “ Flood prevention in Serbia and legal challenges in obtaining the land for flood risk management.” Environ. Sci. Policy 116 ( Feb ): 213 – 219. https://doi.org/10.1016/j.envsci.2020.11.007.
Pramanik, N., R. K. Panda, and A. Singh. 2011. “ Daily river flow forecasting using wavelet ANN hybrid models.” J. Hydroinf. 13 ( 1 ): 49 – 63. https://doi.org/10.2166/hydro.2010.040.
Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark. 2017. “ Increased rainfall volume from future convective storms in the US.” Nat. Clim. Change 7 ( 12 ): 880 – 884. https://doi.org/10.1038/s41558-017-0007-7.
Rahmstorf, S. 2017. “Rising hazard of storm-surge flooding.” Proc. Natl. Acad. Sci. 114 (45): 11806–11808. https://doi.org/10.1073/pnas.1715895114.
Ramachandra Rao, A., and K. H. Hamed. 2000. Flood frequency analysis. Boca Raton, FL : CRC Press.
Ravazzani, G., A. Amengual, A. Ceppi, V. Homar, R. Romero, G. Lombardi, and M. Mancini. 2016. “ Potentialities of ensemble strategies for flood forecasting over the Milano urban area.” J. Hydrol. 539 ( Aug ): 237 – 253. https://doi.org/10.1016/j.jhydrol.2016.05.023.
Read, L. K., and R. M. Vogel. 2015. “ Reliability, return periods, and risk under nonstationarity.” Water Resour. Res. 51 ( 8 ): 6381 – 6398. https://doi.org/10.1002/2015WR017089.
Reis, D. S., A. G. Veilleux, J. R. Lamontagne, J. R. Stedinger, and E. S. Martins. 2020. “ Operational Bayesian GLS regression for regional hydrologic analyses.” Water Resour. Res. 56 ( 8 ): e2019WR026940. https://doi.org/10.1029/2019WR026940.
Ridolfi, E., F. Albrecht, and G. D. Baldassarre. 2020. “ Exploring the role of risk perception in influencing flood losses over time.” Hydrol. Sci. J. 65 ( 1 ): 12 – 20. https://doi.org/10.1080/02626667.2019.1677907.
Roderick, T. P., C. Wasko, and A. Sharma. 2019. “ Atmospheric moisture measurements explain increases in tropical rainfall extremes.” Geophys. Res. Lett. 46 ( 3 ): 1375 – 1382. https://doi.org/10.1029/2018GL080833.
Rogelis, M. C., and M. Werner. 2018. “ Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas.” Hydrol. Earth Syst. Sci. 22 ( 1 ): 853 – 870. https://doi.org/10.5194/hess-22-853-2018.
Rollason, E., L. J. Bracken, R. J. Hardy, and A. R. G. Large. 2018. “ Rethinking flood risk communication.” Nat. Hazards 92 ( 3 ): 1665 – 1686. https://doi.org/10.1007/s11069-018-3273-4.
Rozos, E., P. Dimitriadis, K. Mazi, S. Lykoudis, and A. Koussis. 2020. “ On the uncertainty of the image velocimetry method parameters.” Hydrology 7 ( 3 ): 65. https://doi.org/10.3390/hydrology7030065.
Saha, A., S. C. Pal, A. Arabameri, T. Blaschke, S. Panahi, I. Chowdhuri, R. Chakrabortty, R. Costache, and A. Arora. 2021. “ Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms.” Water 13 ( 2 ): 241. https://doi.org/10.3390/w13020241.
Sahay, R. R., and A. Srivastava. 2014. “ Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network.” Water Resour. Manage. 28 ( 2 ): 301 – 317. https://doi.org/10.1007/s11269-013-0446-5.
Sairam, N., K. Schröter, S. Lüdtke, B. Merz, and H. Kreibich. 2019. “ Quantifying flood vulnerability reduction via private precaution.” Earth’s Future 7 ( 3 ): 235 – 249. https://doi.org/10.1029/2018EF000994.
Sakamoto, T. 2005. “ A crop phenology detection method using time-series MODIS data.” Remote Sens. Environ. 96 ( 3–4 ): 366 – 374. https://doi.org/10.1016/j.rse.2005.03.008.
Salas, J. D., and J. Obeysekera. 2014. “ Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events.” J. Hydrol. Eng. 19 ( 3 ): 554 – 568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820.
Salas, J. D., J. Obeysekera, and R. M. Vogel. 2018. “ Techniques for assessing water infrastructure for nonstationary extreme events: A review.” Hydrol. Sci. J. 63 ( 3 ): 325 – 352. https://doi.org/10.1080/02626667.2018.1426858.
Salazar, S., F. Francés, J. Komma, T. Blume, T. Francke, A. Bronstert, and G. Blöschl. 2012. “ A comparative analysis of the effectiveness of flood management measures based on the concept of ‘retaining water in the landscape’ in different European hydro-climatic regions.” Nat. Hazards Earth Syst. Sci. 12 ( 11 ): 3287 – 3306. https://doi.org/10.5194/nhess-12-3287-2012.
Saleh, F., V. Ramaswamy, N. Georgas, A. F. Blumberg, and J. Pullen. 2019. “ Inter-comparison between retrospective ensemble streamflow forecasts using meteorological inputs from ECMWF and NOAA/ESRL in the Hudson River sub-basins during Hurricane Irene (2011).” Hydrol. Res. 50 ( 1 ): 166 – 186. https://doi.org/10.2166/nh.2018.182.
Salvadori, G., and C. De Michele. 2007. “ On the use of copulas in hydrology: Theory and practice.” J. Hydrol. Eng. 12 ( 4 ): 369 – 380. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(369).
Salvadori, G., C. De Michele, N. T. Kottegoda, and R. Rosso. 2007. Extremes in nature: An approach using copulas, 292. Dordrecht, Netherlands : Springer.
Samuels, P., F. Klijn, and J. Dijkman. 2006. “An analysis of the current practice of policies on river flood risk management in different countries.” Supplement, Irrig. Drain. J. Int. Commission Irrig. Drain. 55 (S1): S141–S150. https://doi.org/10.1002/ird.257.
Sayers, P., L. Yuanyuan, G. Galloway, E. Penning-Rowsell, S. Fuxin, W. Kang, C. Yiwei, and T. Le Quesne. 2013. Flood risk management: A strategic approach. London: Asian Development Bank.
Schleussner, C. F., et al. 2016. “ Differential climate impacts for policy-relevant limits to global warming: The case of 1.5°C and 2°C.” Earth Syst. Dyn. 7 ( 2 ): 327 – 351. https://doi.org/10.5194/esd-7-327-2016.
Schumann, G. J. P., G. R. Brakenridge, A. J. Kettner, R. Kashif, and E. Niebuhr. 2018. “ Assisting flood disaster response with earth observation data and products: A critical assessment.” Remote Sens. 10 ( 8 ): 1230.
Schumann, G. J.-P. 2017. “Remote sensing of floods.” In Oxford research encyclopedia of natural hazard science. Oxford, UK: Oxford University Press.
Schumann, G. J.-P., J. C. Neal, D. C. Mason, and P. D. Bates. 2011. “ The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods.” Remote Sens. Environ. 115 ( 10 ): 2536 – 2546. https://doi.org/10.1016/j.rse.2011.04.039.
Scolobig, A., M. Riegler, P. Preuner, J. Linnerooth-Bayer, D. Ottowitz, S. Hoyer, and B. Jochum. 2017. “ Warning system options for landslide risk: A case study in upper Austria.” Resources 6 ( 3 ): 37. https://doi.org/10.3390/resources6030037.
Scussolini, P., J. C. Aerts, B. Jongman, L. M. Bouwer, H. C. Winsemius, H. de Moel, and P. J. Ward. 2016. “ FLOPROS: An evolving global database of flood protection standards.” Nat. Hazards Earth Syst. Sci. 16 ( 5 ): 1049 – 1061. https://doi.org/10.5194/nhess-16-1049-2016.
Seager, R., and G. A. Vecchi. 2010. “ Greenhouse warming and the 21st century hydroclimate of southwestern North America.” Proc. Natl. Acad. Sci. 107 ( 50 ): 21277. https://doi.org/10.1073/pnas.0910856107.
Sehgal, V., R. R. Sahay, and C. Chatterjee. 2014. “ Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models.” Water Resour. Manage. 28 ( 6 ): 1733 – 1749. https://doi.org/10.1007/s11269-014-0584-4.
Seneviratne, S. I., et al. 2021. “Weather and climate extreme events in a changing climate.” In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, edited by V. Masson-Delmotte, et al. Cambridge, UK: Cambridge University Press.
Serago, J. M., and R. M. Vogel. 2018. “ Parsimonious nonstationary flood frequency analysis.” Adv. Water Resour. 112 ( Feb ): 1 – 16. https://doi.org/10.1016/j.advwatres.2017.11.026.
Serra-Llobet, A., R. Tourment, A. Montané, and T. Buffin-Belanger. 2021. “Acknowledging residual risk behind levees: Examples from the USA, France, and Quebec (Canada).” In Flooodrisk2020. London: HAL INRAE.
Shah, A. A., J. Ye, M. Abid, J. Khan, and S. M. Amir. 2018. “ Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan.” Nat. Hazards 93 ( 1 ): 147 – 165. https://doi.org/10.1007/s11069-018-3293-0.
Shamseldin, A. Y. 2010. “ Artificial neural network model for river flow forecasting in a developing country.” J. Hydroinf. 12 ( 1 ): 22 – 35. https://doi.org/10.2166/hydro.2010.027.
Sharma, A., C. Wasko, and D. P. Lettenmaier. 2018. “ If precipitation extremes are increasing, why aren’t floods? ” Water Resour. Res. 54 ( 11 ): 8545 – 8551. https://doi.org/10.1029/2018WR023749.
Sherman, L. K. 1932. “ Streamflow from rainfall by the unit-graph method.” Eng. News Rec. 108 : 501 – 505.
Singh, J., S. Karmakar, D. PaiMazumder, S. Ghosh, and D. Niyogi. 2020. “ Urbanization alters rainfall extremes over the contiguous United States.” Environ. Res. Lett. 15 ( 7 ): 074033. https://doi.org/10.1088/1748-9326/ab8980.
Singh, V. P. 1998. “Log-Pearson type III distribution.” In Entropy-based parameter estimation in hydrology, 252–274. New York: Springer.
Singh, V. P., D. Eng, and H. D. Wre. 2015. Entropy theory in hydrologic science and engineering. New York : McGraw-Hill.
Singh, V. P., and D. K. Frevert. 2002. Mathematical models of large watershed hydrology. Littleton, CO : Water Resources Publication.
Singh, V. P., and D. K. Frevert. 2012. Watershed models, 156 – 167. Reston, VA : ASCE.
Singh, V. P., and D. A. Woolhiser. 2002. “ Mathematical modeling of watershed hydrology.” J. Hydrol. Eng. 7 ( 4 ): 270 – 292. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(270).
Siqueira, V. A., A. Weerts, B. Klein, F. M. Fan, R. C. D. de Paiva, and W. Collischonn. 2021. “ Postprocessing continental-scale, medium-range ensemble streamflow forecasts in South America using ensemble model output statistics and ensemble copula coupling.” J. Hydrol. 600 ( Sep ): 126520. https://doi.org/10.1016/j.jhydrol.2021.126520.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers. 2005. A description of the advanced research WRF version 2. Boulder, CO : National Center for Atmospheric Research.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and J. G. Powers. 2008. A description of the advanced research WRF version 3. New York: NCAR Mesa Laboratory.
Slater, L. J., M. B. Singer, and J. W. Kirchner. 2015. “ Hydrologic versus geomorphic drivers of trends in flood hazard.” Geophys. Res. Lett. 42 ( 2 ): 370 – 376. https://doi.org/10.1002/2014GL062482.
Slater, L. J., and G. Villarini. 2016. “ Recent trends in US flood risk.” Geophys. Res. Lett. 43 ( 24 ): 12,428 – 12,436. https://doi.org/10.1002/2016GL071199.
Smith, J. A., M. L. Baeck, Y. Zhang, and C. A. Doswell. 2001. “ Extreme rainfall and flooding from supercell thunderstorms.” J. Hydrometeorol. 2 ( 5 ): 469 – 489. https://doi.org/10.1175/1525-7541(2001)002%3C0469:ERAFFS%3E2.0.CO;2.
Sofia, G., and E. I. Nikolopoulos. 2020. “ Floods and rivers: A circular causality perspective.” Sci. Rep. 10 ( 1 ): 5175. https://doi.org/10.1038/s41598-020-61533-x.
Solomatine, D. P., and Y. Xue. 2004. “ M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China.” J. Hydrol. Eng. 9 ( 6 ): 491 – 501. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491).
Stedinger, J. R. 2017. “Flood frequency analysis.” Chap. 76 in Handbook of hydrology, edited by V. P. Singh, 2nd ed. New York: McGraw-Hill.
Stedinger, J. R., and V. W. Griffis. 2011. “ Getting from here to where? Flood frequency analysis and climate1.” JAWRA J. Am. Water Resour. Assoc. 47 ( 3 ): 506 – 513. https://doi.org/10.1111/j.1752-1688.2011.00545.x.
Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou. 1993. “Frequency analysis of extreme events.” Chap. 18 in Handbook of hydrology, edited by D. Maidment. New York: McGraw-Hill.
Steinschneider, S., S. Wi, and C. Brown. 2015. “ The integrated effects of climate and hydrologic uncertainty on future flood risk assessments.” Hydrol. Process. 29 ( 12 ): 2823 – 2839. https://doi.org/10.1002/hyp.10409.
Steirou, E., L. Gerlitz, H. Apel, and B. Merz. 2017. “ Links between large-scale circulation patterns and streamflow in Central Europe: A review.” J. Hydrol. 549 ( Jun ): 484 – 500. https://doi.org/10.1016/j.jhydrol.2017.04.003.
Steirou, E., L. Gerlitz, H. Apel, X. Sun, and B. Merz. 2019. “ Climate influences on flood probabilities across Europe.” Hydrol. Earth Syst. Sci. 23 ( 3 ): 1305 – 1322. https://doi.org/10.5194/hess-23-1305-2019.
Surminski, S., and A. H. Thieken. 2017. “ Promoting flood risk reduction: The role of insurance in Germany and England.” Earth’s Future 5 ( 10 ): 979 – 1001. https://doi.org/10.1002/2017EF000587.
Suykens, C., S. J. Priest, W. J. van Doorn-Hoekveld, T. Thuillier, and M. van Rijswick. 2016. “ Dealing with flood damages: Will prevention, mitigation, and ex post compensation provide for a resilient triangle? ” Ecol. Soc. 21 ( 4 ): 1. https://doi.org/10.5751/ES-08592-210401.
Taleb, N. N. 2007. “ The black swan: the impact of the highly improbable ” Rev. Austrian Econ. 21 ( 1 ): 361–364.
Taleb, N. N., and M. Blyth. 2011. “The black swan of Cairo: How suppressing volatility makes the world less predictable and more dangerous.” J. Storage New York Foreign Affairs 90 (3): 33–39.
Tan, Q.-F., X.-H. Lei, X. Wang, H. Wang, X. Wen, Y. Ji, and A. Q. Kang. 2018. “ An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach.” J. Hydrol. 567 ( Dec ): 767 – 780. https://doi.org/10.1016/j.jhydrol.2018.01.015.
Thielen, J., K. Bogner, F. Pappenberger, M. Kalas, M. Del Medico, and A. De Roo. 2009. “ Monthly-, medium-, and short-range flood warning: Testing the limits of predictability.” Meteorol. Appl.: J Forecasting Pract. Appl. Training Tech. Modell. 16 ( 1 ): 77 – 90. https://doi.org/10.1002/met.140.
Thiemig, V., B. Bisselink, F. Pappenberger, and J. Thielen. 2015. “ A pan-African medium-range ensemble flood forecast system.” Hydrol. Earth Syst. Sci. 19 ( 8 ): 3365 – 3385. https://doi.org/10.5194/hess-19-3365-2015.
Tian, F., Y. Li, T. Zhao, H. Hu, F. Pappenberger, Y. Jiang, and H. Lu. 2018. “ Evaluation of the ECMWF System 4 climate forecasts for streamflow forecasting in the Upper Hanjiang River Basin.” Hydrol. Res. 49 ( 6 ): 1864 – 1879. https://doi.org/10.2166/nh.2018.176.
Tian, J., J. Liu, D. Yan, L. Ding, and C. Li. 2019. “ Ensemble flood forecasting based on a coupled atmospheric-hydrological modeling system with data assimilation.” Atmos. Res. 224 ( Aug ): 127 – 137. https://doi.org/10.1016/j.atmosres.2019.03.029.
Tiwari, M. K., and C. Chatterjee. 2010. “ Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach.” J. Hydrol. 394 ( 3–4 ): 458 – 470. https://doi.org/10.1016/j.jhydrol.2010.10.001.
Tonn, G. L., and S. D. Guikema. 2018. “ An agent-based model of evolving community flood risk.” Risk Anal. 38 ( 6 ): 1258 – 1278. https://doi.org/10.1111/risa.12939.
Towner, J., A. Ficchí, H. L. Cloke, J. Bazo, E. Coughlan de Perez, and E. M. Stephens. 2021. “ Influence of ENSO and tropical Atlantic climate variability on flood characteristics in the Amazon basin.” Hydrol. Earth Syst. Sci. 25 ( 7 ): 3875 – 3895. https://doi.org/10.5194/hess-25-3875-2021.
Tramblay, Y., G. Villarini, and W. Zhang. 2020. “ Observed changes in flood hazard in Africa.” Environ. Res. Lett. 15 ( 10 ): 1040b5. https://doi.org/10.1088/1748-9326/abb90b.
Trenberth, K. E. 2011. “ Changes in precipitation with climate change.” Clim. Res. 47 ( 1–2 ): 123 – 138. https://doi.org/10.3354/cr00953.
Tripathi, G., A. C. Pandey, B. R. Parida, and A. Kumar. 2020. “ Flood inundation mapping and impact assessment using multi-temporal optical and SAR satellite data: A case study of 2017 Flood in Darbhanga district, Bihar, India.” Water Resour. Manage. 34 ( 6 ): 1871 – 1892. https://doi.org/10.1007/s11269-020-02534-3.
Tyler, J., A.-A. Sadiq, and D. S. Noonan. 2019. “ A review of the community flood risk management literature in the USA: Lessons for improving community resilience to floods.” Nat. Hazards 96 ( 3 ): 1223 – 1248. https://doi.org/10.1007/s11069-019-03606-3.
UNISDR (United Nations International Strategy for Disaster Reduction). 2015a. Global assessment report on disaster risk reduction 2015. Geneva: UNISDR.
UNISDR (Centre for Research on the Epidemiology of Disaster). 2015b. The human cost of natural disasters: A global perspective. Geneva: UNISDR.
UN (United Nations). 2018. Revision of world urbanization prospects, 799. New York : UN.
USGS. n.d. Landsat-7 image courtesy of the U.S. Geological Survey. Washington, DC : USGS.
Valeriano, O. C. S., T. Koike, K. Yang, T. Graf, X. Li, L. Wang, and X. Han. 2010. “ Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts.” Water Resour. Res. 46 ( 10 ).
van der Wiel, K., S. B. Kapnick, G. J. van Oldenborgh, K. Whan, S. Philip, G. A. Vecchi, R. K. Singh, J. Arrighi, and H. Cullen. 2017. “ Rapid attribution of the August 2016 flood-inducing extreme precipitation in south Louisiana to climate change.” Hydrol. Earth Syst. Sci. 21 ( 2 ): 897 – 921. https://doi.org/10.5194/hess-21-897-2017.
Viglione, A., R. Merz, J. L. Salinas, and G. Blöschl. 2013. “ Flood frequency hydrology: 3. A Bayesian analysis.” Water Resour. Res. 49 ( 2 ): 675 – 692. https://doi.org/10.1029/2011WR010782.
Villarini, G., and W. Zhang. 2020. “ Projected changes in flooding: A continental US perspective.” Ann. N.Y. Acad. Sci. 1472 ( 1 ): 95 – 103. https://doi.org/10.1111/nyas.14359.
Vogel, R. M., and C. N. Kroll. 2020. “ A comparison of estimators of the conditional mean under non-stationary conditions.” Adv. Water Resour. 143 ( Sep ): 103672. https://doi.org/10.1016/j.advwatres.2020.103672.
Vorogushyn, S., et al. 2018. “ Evolutionary leap in large-scale flood risk assessment needed.” Wiley Interdiscip. Rev.: Water 5 ( 2 ): e1266. https://doi.org/10.1002/wat2.1266.
Vu, T. M., and A. K. Mishra. 2019. “ Nonstationary frequency analysis of the recent extreme precipitation events in the United States.” J. Hydrol. 575 ( Aug ): 999 – 1010. https://doi.org/10.1016/j.jhydrol.2019.05.090.
Wahl, T., S. Jain, J. Bender, S. D. Meyers, and M. E. Luther. 2015. “ Increasing risk of compound flooding from storm surge and rainfall for major US cities.” Nat. Clim. Change 5 ( 12 ): 1093 – 1097. https://doi.org/10.1038/nclimate2736.
Walker, W. E., M. Haasnoot, and J. H. Kwakkel. 2013. “ Adapt or perish: A review of planning approaches for adaptation under deep uncertainty.” Sustainability 5 ( 3 ): 955 – 979. https://doi.org/10.3390/su5030955.
Wang, Y., J. D. Colby, and K. A. Mulcahy. 2002. “ An efficient method for mapping flood extent in a coastal flood plain using Landsat TM and DEM data.” Int. J. Remote Sens. 23 ( 18 ): 3681 – 3696. https://doi.org/10.1080/01431160110114484.
Wang, Y., H. Wang, X. Lei, Y. Jiang, and X. Song. 2011. “ Flood simulation using parallel genetic algorithm integrated wavelet neural networks.” Neurocomputing 74 ( 17 ): 2734 – 2744. https://doi.org/10.1016/j.neucom.2011.03.018.
Wang, Z.-M., O. Batelaan, and F. De Smedt. 1996. “ A distributed model for water and energy transfer between soil, plants and atmosphere (WetSpa).” Phys. Chem. Earth 21 ( 3 ): 189 – 193. https://doi.org/10.1016/S0079-1946(97)85583-8.
Ward, P. J., et al. 2015. “ Usefulness and limitations of global flood risk models.” Nat. Clim. Change 5 ( 8 ): 712 – 715. https://doi.org/10.1038/nclimate2742.
Wasko, C., and R. Nathan. 2019. “ Influence of changes in rainfall and soil moisture on trends in flooding.” J. Hydrol. 575 ( Aug ): 432 – 441. https://doi.org/10.1016/j.jhydrol.2019.05.054.
Wasko, C., and A. Sharma. 2017. “ Global assessment of flood and storm extremes with increased temperatures.” Sci. Rep. 7 ( 1 ): 7945. https://doi.org/10.1038/s41598-017-08481-1.
Wei, S., D. Zuo, and J. Song. 2012. “ Improving prediction accuracy of river discharge time series using a Wavelet-NAR artificial neural network.” J. Hydroinf. 14 ( 4 ): 974 – 991. https://doi.org/10.2166/hydro.2012.143.
Wesselink, A., J. Warner, M. A. Syed, F. Chan, D. D. Tran, H. Huq, F. Huthoff, F. Le Thuy, N. Le Thuy, and N. Pinter. 2015. “ Trends in flood risk management in deltas around the world: Are we going ‘soft.’ ” Int. J. Water Gov. 4 ( 4 ): 25 – 46. https://doi.org/10.7564/15-IJWG90.
Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier. 1994. “ A distributed hydrology-vegetation model for complex terrain.” Water Resour. Res. 30 ( 6 ): 1665 – 1679. https://doi.org/10.1029/94WR00436.
Wright, D. B. 2018. “Rainfall information for global flood modeling.” In Global flood hazard: Applications in modeling, mapping, and forecasting, edited by G. J. Schumann, P. D. Bates, H. Apel, and G. T. Aronica. New York: Wiley.
Wright, D. B., C. D. Bosma, and T. Lopez-Cantu. 2019. “ US hydrologic design standards insufficient due to large increases in frequency of rainfall extremes.” Geophys. Res. Lett. 46 ( 14 ): 8144 – 8153. https://doi.org/10.1029/2019GL083235.
Wright, D. B., G. Yu, and J. F. England. 2020. “ Six decades of rainfall and flood frequency analysis using stochastic storm transposition: Review, progress, and prospects.” J. Hydrol. 585 ( Jun ): 124816. https://doi.org/10.1016/j.jhydrol.2020.124816.
Wu, C. L., and K. W. Chau. 2006. “ A flood forecasting neural network model with genetic algorithm.” Int. J. Environ. Pollut. 28 ( 3–4 ): 261 – 273. https://doi.org/10.1504/IJEP.2006.011211.
Wu, C. L., K. W. Chau, and Y. S. Li. 2008. “ River stage prediction based on a distributed support vector regression.” J. Hydrol. 358 ( 1–2 ): 96 – 111. https://doi.org/10.1016/j.jhydrol.2008.05.028.
Wu, C. L., K. W. Chau, and Y. S. Li. 2009. “ Methods to improve neural network performance in daily flows prediction.” J. Hydrol. 372 ( 1–4 ): 80 – 93. https://doi.org/10.1016/j.jhydrol.2009.03.038.
Wu, J., K. Bao, and H. Zhang. 2011. “Research progress on dam-break floods.” In Proc., 2nd IEEE Int. Conf. on Emergency Management and Management Sciences, 334–338. New York: IEEE.
Wu, J., H. Liu, G. Wei, T. Song, C. Zhang, and H. Zhou. 2019. “ Flash flood forecasting using support vector regression model in a small mountainous catchment.” Water 11 ( 7 ): 1327. https://doi.org/10.3390/w11071327.
Wu, P., N. Christidis, and P. Stott. 2013. “ Anthropogenic impact on Earth’s hydrological cycle.” Nat. Clim. Change 3 ( 9 ): 807 – 810. https://doi.org/10.1038/nclimate1932.
Wu, Y., and J. Zhou. 2019. “ Risk assessment of urban rooftop distributed PV in energy performance contracting (EPC) projects: An extended HFLTS-DEMATEL fuzzy synthetic evaluation analysis.” Sustainable Cities Soc. 47 ( May ): 101524. https://doi.org/10.1016/j.scs.2019.101524.
Wu, Z., Y. Zhou, H. Wang, and Z. Jiang. 2020. “ Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse.” Sci. Total Environ. 716 ( May ): 137077. https://doi.org/10.1016/j.scitotenv.2020.137077.
Wuebbles, D., et al. 2014. “ CMIP5 climate model analyses: Climate extremes in the United States.” Bull. Am. Meteorol. Soc. 95 ( 4 ): 571 – 583. https://doi.org/10.1175/BAMS-D-12-00172.1.
Xian, G., and C. Homer. 2010. “ Updating the 2001 national land cover database impervious surface products to 2006 using Landsat imagery change detection methods.” Rem. Sens. Environ. 114 ( 8 ): 1676 – 1686. https://doi.org/10.1016/j.rse.2010.02.018.
Xu, H. 2006. “ Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.” Int. J. Remote Sens. 27 ( 14 ): 3025 – 3033. https://doi.org/10.1080/01431160600589179.
Yang, D., S. Herath, and K. Musiake. 1998. “ Development of a geomorphology-based hydrological model for large catchments.” Proc. Hydraul. Eng. 42 (Aug): 169 – 174. https://doi.org/10.2208/prohe.42.169.
Yang, L., J. Scheffran, H. Qin, and Q. You. 2015. “ Climate-related flood risks and urban responses in the Pearl River Delta, China.” Reg. Environ. Change 15 ( 2 ): 379 – 391. https://doi.org/10.1007/s10113-014-0651-7.
Yang, L., J. Smith, and D. Niyogi. 2019. “ Urban impacts on extreme monsoon rainfall and flooding in complex terrain.” Geophys. Res. Lett. 46 ( 11 ): 5918 – 5927. https://doi.org/10.1029/2019GL083363.
Yang, L., J. A. Smith, D. B. Wright, M. L. Baeck, G. Villarini, F. Tian, and H. Hu. 2013. “ Urbanization and climate change: An examination of nonstationarities in urban flooding.” J. Hydrometeor. 14 ( 6 ): 1791 – 1809.
Yang, T. H., G. D. Hwang, C. C. Tsai, and J. Y. Ho. 2016. “ Using rainfall thresholds and ensemble precipitation forecasts to issue and improve urban inundation alerts.” Hydrol. Earth Syst. Sci. 20 ( 12 ): 4731 – 4745. https://doi.org/10.5194/hess-20-4731-2016.
Yaseen, Z. M., I. Ebtehaj, H. Bonakdari, R. C. Deo, A. D. Mehr, W. H. M. W. Mohtar, L. Diop, A. El-Shafie, and V. P. Singh. 2017. “ Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model.” J. Hydrol. 554 ( Nov ): 263 – 276. https://doi.org/10.1016/j.jhydrol.2017.09.007.
Yin, J., P. Gentine, S. Zhou, S. C. Sullivan, R. Wang, Y. Zhang, and S. Guo. 2018. “ Large increase in global storm runoff extremes driven by climate and anthropogenic changes.” Nat. Commun. 9 ( 1 ): 4389. https://doi.org/10.1038/s41467-018-06765-2.
Yu, G., D. B. Wright, and K. D. Holman. 2021. “ Connecting hydrometeorological processes to low-probability floods in the mountainous Colorado front range.” Water Resour. Res. 57 ( 4 ): e2021WR029768. https://doi.org/10.1029/2021WR029768.
Yu, G., D. B. Wright, Z. Zhu, C. Smith, and K. D. Holman. 2019. “ Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality.” Hydrol. Earth Syst. Sci. 23 ( 5 ): 2225 – 2243. https://doi.org/10.5194/hess-23-2225-2019.
Yu, P. S., S. T. Chen, and I. F. Chang. 2006. “ Support vector regression for real-time flood stage forecasting.” J. Hydrol. 328 ( 3–4 ): 704 – 716. https://doi.org/10.1016/j.jhydrol.2006.01.021.
Yu, X., and J. R. Stedinger. 2018. LP3 flood frequency analysis including climate change, 459 – 467. Reston, VA : ASCE.
Yu, X., Y. Wang, L. Wu, G. Chen, L. Wang, and H. Qin. 2020. “ Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting.” J. Hydrol. 582 ( Mar ): 124293. https://doi.org/10.1016/j.jhydrol.2019.124293.
Zhang, L., and V. P. Singh. 2019. Copulas and their applications in water resources engineering. Cambridge, UK : Cambridge University Press.
Zhang, W., G. Villarini, G. A. Vecchi, and J. A. Smith. 2018. “ Urbanization exacerbated the rainfall and flooding caused by hurricane Harvey in Houston.” Nature 563 ( 7731 ): 384 – 388. https://doi.org/10.1038/s41586-018-0676-z.
Zhao, R. 1977. Flood forecasting method for humid regions of China. Nanjing, China : East China College of Hydraulic Engineering.
Zhou, Y., S. Guo, and F. J. Chang. 2019. “ Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts.” J. Hydrol. 570 ( Mar ): 343 – 355. https://doi.org/10.1016/j.jhydrol.2018.12.040.
Zhu, Z., D. B. Wright, and G. Yu. 2018. “ The impact of rainfall space-time structure in flood frequency analysis.” Water Resour. Res. 54 ( 11 ): 8983 – 8998. https://doi.org/10.1029/2018WR023550.
Zickgraf, C. 2021. “ Climate change, slow onset events and human mobility: Reviewing the evidence.” Curr. Opin. Environ. Sustainability 50 ( Jun ): 21 – 30. https://doi.org/10.1016/j.cosust.2020.11.007.
Zucco, G., G. Tayfur, and T. Moramarco. 2015. “ Reverse flood routing in natural channels using genetic algorithm.” Water Resour. Manage. 29 ( 12 ): 4241 – 4267. https://doi.org/10.1007/s11269-015-1058-z.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 27Issue 6June 2022

History

Published online: Mar 24, 2022
Published in print: Jun 1, 2022
Discussion open until: Aug 24, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ashok Mishra, M.ASCE [email protected]
Professor, Glenn Dept. of Civil Engineering, Clemson Univ., Clemson, SC 29630 (corresponding author). Email: [email protected]
Sourav Mukherjee [email protected]
Postdoctoral Research Fellow, Glenn Dept. of Civil Engineering, Clemson Univ., Clemson, SC 29630. Email: [email protected]
Head of Section Hydrology, Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Potsdam 14473, Germany; Professor for Engineering Hydrology and Management of Georisks, Institute of Environmental Science and Geography, Univ. of Potsdam, Potsdam 14476, Germany. ORCID: https://orcid.org/0000-0002-5992-1440
Vijay P. Singh, Dist.M.ASCE https://orcid.org/0000-0003-1299-1457
Distinguished Professor, Regents Professor, and Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Dept. of Biological and Agricultural Engineering and Dept. of Civil and Environmental Engineering, Texas A&M Univ., College Station, TX 77843. ORCID: https://orcid.org/0000-0003-1299-1457
Daniel B. Wright, A.M.ASCE
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Wisconsin–Madison, Madison, WI 53706.
Professor in Civil and Environmental Engineering and Director of IIHR—Hydroscience & Engineering, Univ. of Iowa, Iowa City, IA 52242. ORCID: https://orcid.org/0000-0001-9566-2370
Postdoctoral Fellow, Dept. of Civil Engineering and Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, Karnataka 560012, India. ORCID: https://orcid.org/0000-0001-5651-2775
Professor, Dept. of Civil Engineering and Interdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, Karnataka 560012, India. ORCID: https://orcid.org/0000-0002-5294-8501
Program Coordinator, Water Management and Hydrological Science, Texas A&M Univ., College Station, TX 77843. ORCID: https://orcid.org/0000-0002-2282-7311
Dev Niyogi, Aff.M.ASCE
John E. “Brick” Elliott Centennial Endowed Professor, Dept. of Geological Sciences and Dept. of Civil, Architectural, and Environmental Engineering, Univ. of Texas, Austin, TX 78712.
Guy Schumann
Visiting Research Fellow, School of Geographical Sciences, Univ. of Bristol, Bristol BS8 1RL, UK.
Jery R. Stedinger, Dist.M.ASCE
D.C.Baum Professor of Engineering Emeritus, School of Civil and Environmental Engineering, Cornell Univ., Ithaca, NY 14853.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Comprehensive Flood Risk Assessment: State of the Practice, Hydrology, 10.3390/hydrology10020046, 10, 2, (46), (2023).
  • Rapid urban flood risk mapping for data-scarce environments using social sensing and region-stable deep neural network, Journal of Hydrology, 10.1016/j.jhydrol.2022.128758, 617, (128758), (2023).
  • POBI interpolation algorithm for CYGNSS near real time flood detection research: A case study of extreme precipitation events in Henan, China in 2021, Advances in Space Research, 10.1016/j.asr.2022.11.016, 71, 6, (2862-2878), (2023).
  • Urban Flood-Related Remote Sensing: Research Trends, Gaps and Opportunities, Remote Sensing, 10.3390/rs14215505, 14, 21, (5505), (2022).
  • The Development of the SARIMA Model for Flood Disaster Resilience, Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Civil and Architecture), 10.2991/978-94-6463-088-6_21, (211-222), (2022).
  • Estimation of the daily flow in river basins using the data-driven model and traditional approaches: an application in the Hieu river basin, Vietnam, Water Practice and Technology, 10.2166/wpt.2022.166, 18, 1, (215-230), (2022).
  • Highlighting the role of the model user and physical interpretation in urban flooding simulation, Journal of Hydroinformatics, 10.2166/hydro.2022.174, 24, 5, (976-991), (2022).
  • Assessing the capacity of large-scale hydrologic-hydrodynamic models for mapping flood hazard in southern Brazil, RBRH, 10.1590/2318-0331.272220220009, 27, (2022).
  • A review of emerging strategies for incorporating climate change considerations into infrastructure planning, design, and decision making, Sustainable and Resilient Infrastructure, 10.1080/23789689.2022.2134646, 8, sup1, (157-169), (2022).
  • Increased Risk of Extreme Precipitation Over an Urban Agglomeration With Future Global Warming, Earth's Future, 10.1029/2021EF002563, 10, 6, (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share