Abstract
In recent years, there has been an increase in interest in estimating probable maximum precipitation (PMP) by numerical weather model (NWM)-based precipitation maximization methods, mainly, the moisture optimization method, storm transposition method, and their combination. This study addresses a quantitative comparison of the effectiveness of each precipitation maximization method regarding the increase in precipitation depths and a discussion on their functions for maximizing precipitation depths. To achieve such a comparison, this study conducted a numerical experiment using the moisture optimization method, which proportionally increases relative humidity using the integrated water vapor transport criterion, and the storm transposition method, which geospatially shifts atmospheric boundary conditions in the weather research and forecasting (WRF) model to maximize atmospheric river (AR)-induced precipitation depths over the Columbia River Basin. Our findings suggest that the storm transposition method should also be considered an essential method in the NWM-based precipitation maximization rather than relying solely on optimizing atmospheric moisture. This study also found that even for ARs with historically small amounts of precipitation over a specified basin, it is possible to increase precipitation depths significantly over the basin by using the storm transposition method. This finding implies that, for maximizing precipitation using the storm transposition method, it is important to select storms that historically did not directly hit the basin but were located around the basin as well, unlike the conventional approach of selecting storms solely based on precipitation depth over the basin. This finding also suggests that the storm transposition method is essential, particularly for estimating long-duration PMP that may cover a whole season, given the contribution of precipitation increase in each single storm event to the snowpack accumulation and reservoir storage for a long duration. Lastly, this study has shown that including the transposition method together with the moisture optimization method can increase precipitation amounts and give a higher upper bound for NWM-based precipitation maximization, especially in AR-dominated regions.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
Some or all data, models, or code generated or used during the study are proprietary or confidential in nature and may only be provided with restrictions.
Acknowledgments
This study was supported by US Army Corps of Engineers (USACE) Grant 3-20B35-Department of Army Engi-W912HZ-17-2-0001. The CFSR dataset (ds093.0, doi:10.5065/D69K487J for 1979 to 2010, ds094.0, doi:10.5065/D61C1TXF for 2011 to present), and the 20CRv2c dataset (ds131.2, doi:10.5065/D6N877TW) were obtained through the NCAR/UCAR Research Data Archive. The PRISM dataset was obtained from the PRISM Climate Group (http://www.prism.oregonstate.edu/).
References
Abbs, D. J. 1999. “A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation.” Water Resour. Res. 35 (3): 785–796. https://doi.org/10.1029/1998WR900013.
Barth, N. A., G. Villarini, M. A. Nayak, and K. White. 2017. “Mixed populations and annual flood frequency estimates in the western United States: The role of atmospheric rivers.” Water Resour. Res. 53 (1): 257–269. https://doi.org/10.1002/2016WR019064.
Chen, T. C. 1985. “Global water vapor flux and Maintenance during FGGE.” Mon. Weather Rev. 113 (10): 1801–1819. https://doi.org/10.1175/1520-0493(1985)113%3C1801:GWVFAM%3E2.0.CO;2.
Chen, X., and F. Hossain. 2018. “Understanding model-based probable maximum precipitation estimation as a function of location and season from atmospheric reanalysis.” J. Hydrometeorol. 19 (2): 459–475. https://doi.org/10.1175/JHM-D-17-0170.1.
Chu, P., and B. Lu. 2022. Probable maximum precipitation estimation over Wahiawa watershed, Oahu using a regional numerical weather model and a moisture maximization procedure. Honolulu: Univ. of Hawaii.
Compo, G. P., et al. 2011. “The twentieth century reanalysis project.” Q. J. R. Meteorol. Soc. 137 (654): 1–28. https://doi.org/10.1002/qj.776.
Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris. 2008. “Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States.” Int. J. Climatol. 28 (15): 2031–2064. https://doi.org/10.1002/joc.1688.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley. 2003. “Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model.” J. Geophys. Res. D: Atmos. 108 (Nov): 1–16. https://doi.org/10.1029/2002jd003296.
Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers. 2014. “Atmospheric rivers: A mini-review.” Front. Earth Sci. 2 (Mar): 2. https://doi.org/10.3389/feart.2014.00002.
Hamlet, A. F., and D. P. Lettenmaier. 1999. “Effects of climate change on hydrology and water resources in the Columbia River Basin.” J. Am. Water Resour. Assoc. 35 (6): 1597–1623. https://doi.org/10.1111/j.1752-1688.1999.tb04240.x.
Hansen, E. M., D. D. Fenn, P. Corrigan, J. L. Vogel, L. C. Schreiner, and R. W. Stodt. 1994. “Probable maximum precipitation -Pacific Northwest states: Columbia River (including portions of Canada), Snake River and Pacific coastal drainages.” Accessed March 1, 2022. https://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR57.pdf.
Hiraga, Y., Y. Iseri, M. D. Warner, C. D. Frans, A. M. Duren, J. F. England, and M. L. Kavvas. 2021. “Estimation of Long-duration Maximum Precipitation during a winter season for large basins dominated by atmospheric rivers using a numerical weather model.” J. Hydrol. 598 (Jul): 126224. https://doi.org/10.1016/j.jhydrol.2021.126224.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins. 2008. “Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models.” J. Geophys. Res. Atmos. 113 (Jul): 2–9. https://doi.org/10.1029/2008JD009944.
Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson. 2015a. “Physically based estimation of maximum precipitation over three watersheds in Northern California: Atmospheric boundary condition shifting.” J. Hydrol. Eng. 20 (4): 04014052. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001026.
Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson. 2015b. “Physically based estimation of maximum precipitation over three watersheds in Northern California: Relative humidity maximization method.” J. Hydrol. Eng. 20 (10): 04015014. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001175.
Ishida, K., N. Ohara, M. L. Kavvas, Z. Q. Chen, and M. L. Anderson. 2018. “Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air.” J. Hydrol. 556 (Jan): 1050–1063. https://doi.org/10.1016/j.jhydrol.2016.10.008.
Janjić, Z. I. 1994. “The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes.” Mon. Weather Rev. 122 (5): 927–945. https://doi.org/10.1175/1520-0493(1994)122%3C0927:TSMECM%3E2.0.CO;2.
Knippertz, P., and H. Wernli. 2010. “A lagrangian climatology of tropical moisture exports to the northern hemispheric extratropics.” J. Clim. 23 (4): 987–1003. https://doi.org/10.1175/2009JCLI3333.1.
Lee, J., J. Choi, O. Lee, J. Yoon, and S. Kim. 2017. “Estimation of probable maximum precipitation in Korea using a regional climate model.” Water 9 (4): 240. https://doi.org/10.3390/w9040240.
Lin, Y., and B. A. Colle. 2011. “A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics.” Mon. Weather Rev. 139 (3): 1013–1035. https://doi.org/10.1175/2010MWR3293.1.
Mure-Ravaud, M., A. Dib, M. L. Kavvas, E. Yegorova, and J. Kanney. 2019a. “Physically based storm transposition of four Atlantic tropical cyclones.” Sci. Total Environ. 666 (May): 252–273. https://doi.org/10.1016/j.scitotenv.2019.02.141.
Mure-Ravaud, M., M. L. Kavvas, and A. Dib. 2019b. “Impact of increased atmospheric moisture on the precipitation depth caused by Hurricane Ivan (2004) over a target area.” Sci. Total Environ. 672 (Jul): 916–926. https://doi.org/10.1016/j.scitotenv.2019.03.471.
Neiman, P. J., F. M. Ralph, G. A. Wick, J. D. Lundquist, and M. D. Dettinger. 2008. “Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West coast of North America based on eight years of SSM/I satellite observations.” J. Hydrometeorol. 9 (1): 22–47. https://doi.org/10.1175/2007JHM855.1.
Nelson, E. R. 1949. “Columbia River Basin flood.” Mon. Weather Rev. 77 (1): 1–10. https://doi.org/10.1175/1520-0493(1949)077%3C0001:crbf%3E2.0.co;2.
Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott. 1992. “Tropospheric rivers?—A pilot study.” Geophys. Res. Lett. 19 (24): 2401–2404. https://doi.org/10.1029/92GL02916.
O’Connor, J. E., and J. E. Costa. 2004. “The world’s largest floods, past and present: Their causes and magnitudes.” Accessed March 1, 2022. https://pubs.usgs.gov/circ/2004/circ1254/pdf/circ1254.pdf.
Ohara, N., M. L. Kavvas, M. L. Anderson, Z. Q. Chen, and K. Ishida. 2017. “Characterization of extreme storm events using a numerical model-based precipitation maximization procedure in the feather, Yuba, and American River Watersheds in California.” J. Hydrometeorol. 18 (5): 1413–1423. https://doi.org/10.1175/JHM-D-15-0232.1.
Ohara, N., M. L. Kavvas, S. Kure, Z. Chen, S. Jang, and E. Tan. 2011. “Physically based estimation of maximum precipitation over American River Watershed, California.” J. Hydrol. Eng. 16 (4): 351–361. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000324.
Ralph, F. M., P. J. Neiman, and G. A. Wick. 2004. “Satellite and CALJET aircraft observations of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 1997/98.” Mon. Weather Rev. 132 (7): 1721–1745. https://doi.org/10.1175/1520-0493(2004)132%3C1721:SACAOO%3E2.0.CO;2.
Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb. 2019. “A scale to characterize the strength and impacts of atmospheric Rivers.” Bull. Am. Meteorol. Soc. 100 (2): 269–289. https://doi.org/10.1175/BAMS-D-18-0023.1.
Rantz, S. E., and H. C. Riggs. 1949. Floods of May–June 1948 in Columbia River Basin—A presentation of data on floods, gathered from selected gaging stations and other sources—Geological survey water-supply paper 1080. Washington, DC: US Government Printing Office.
Rastogi, D., S. C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, N. Singh, and V. G. Anantharaj. 2017. “Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin.” J. Geophys. Res. 122 (9): 4808–4828. https://doi.org/10.1002/2016JD026001.
Rutz, J. J., W. James Steenburgh, and F. Martin Ralph. 2014. “Climatological characteristics of atmospheric rivers and their inland penetration over the western united states.” Mon. Weather Rev. 142 (2): 905–921. https://doi.org/10.1175/MWR-D-13-00168.1.
Rutz, J. J., W. James Steenburgh, and F. Martin Ralph. 2015. “The inland penetration of atmospheric rivers over western North America: A Lagrangian analysis.” Mon. Weather Rev. 143 (5): 1924–1944. https://doi.org/10.1175/MWR-D-14-00288.1.
Saha, S., et al. 2010. “The NCEP climate forecast system reanalysis.” Bull. Am. Meteorol. Soc. 91 (8): 1015–1058. https://doi.org/10.1175/2010BAMS3001.1.
Skamarock, W. C., J. B. Klemp, J. Dudhi, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers. 2008. A description of the advanced research WRF version 3. Boulder, CO: University Corporation for Atmospheric Research. https://doi.org/10.5065/D6DZ069T.
Stanford, J. A., S. V. Gregory, F. R. Hauer, and E. B. Snyder. 2005. “ColumbiaRiver Basin.” In Rivers of NorthAmerica, edited by A. C. Benke and C. E. Cushing, 591–653. Amsterdam, Netherlands: Elsevier Academic Press.
Toride, K., Y. Iseri, M. D. Warner, C. D. Frans, A. M. Duren, J. F. England, and M. L. Kavvas. 2019. “Model-based probable maximum precipitation estimation: How to estimate the worst-case scenario induced by atmospheric rivers?” J. Hydrometeorol. 20 (12): 2383–2400. https://doi.org/10.1175/JHM-D-19-0039.1.
Trinh, T., Y. Iseri, A. J. Diaz, E. D. Snider, M. L. Anderson, and M. L. Kavvas. 2022. “Maximization of historical storm events over seven watersheds in Central/Southern Sierra Nevada by means of atmospheric boundary condition shifting and relative humidity optimization methods.” J. Hydrol. Eng. 27 (3): 04021051. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002159.
US Department of the Interior, Bureau of Reclamation. 2016. SECURE water act section 9503(c) Reclamation Climate Change and Water 2016, chapter 4: Columbia River Basin. Denver: US Department of the Interior, Bureau of Reclamation.
Virtanen, P., et al. 2020. “SciPy 1.0: Fundamental algorithms for scientific computing in Python.” Nat. Methods 17 (3): 261–272. https://doi.org/10.1038/s41592-019-0686-2.
Warner, M. D., C. F. Mass, and E. P. Salatheé. 2012. “Wintertime extreme precipitation events along the Pacific Northwest Coast: Climatology and synoptic evolution.” Mon. Weather Rev. 140 (7): 2021–2043. https://doi.org/10.1175/MWR-D-11-00197.1.
WMO (World Meteorological Organization). 2009. “Manual on estimation of probable maximum precipitation (PMP).” Accessed March 1, 2022. https://library.wmo.int/doc_num.php?explnum_id57706.
Yang, L., and J. Smith. 2018. “Sensitivity of extreme rainfall to atmospheric moisture content in the arid/semiarid southwestern united states: Implications for probable maximum precipitation estimates.” J. Geophys. Res. Atmos. 123 (3): 1638–1656. https://doi.org/10.1002/2017JD027850.
Zhang, G. J., and N. A. McFarlane. 1995. “Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model.” Atmos. Ocean 33 (3): 407–446. https://doi.org/10.1080/07055900.1995.9649539.
Zhao, W., J. A. Smith, and A. A. Bradley. 1997. “Numerical simulation of a heavy rainfall event during the PRE-STORM experiment.” Water Resour. Res. 33 (4): 783–799. https://doi.org/10.1029/96WR03036.
Zhu, Y., and R. E. Newell. 1998. “A proposed algorithm for moisture fluxes from atmospheric rivers.” Mon. Weather Rev. 126 (3): 725–735. https://doi.org/10.1175/1520-0493(1998)126%3C0725:APAFMF%3E2.0.CO;2.
Information & Authors
Information
Published In
Copyright
© 2022 American Society of Civil Engineers.
History
Received: Mar 11, 2022
Accepted: Aug 26, 2022
Published online: Oct 31, 2022
Published in print: Jan 1, 2023
Discussion open until: Mar 31, 2023
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Cited by
- Yusuke HIRAGA, Yoshihiko ISERI, Michael D. WARNER, Angela M. DUREN, John F. ENGLAND, Chris D. FRANS, Levent KAVVAS, MAXIMAZATION OF PRECIPITATION SEQUENCES DURING WINTERTIME IN THE COLUMBIA RIVER BASIN AND ITS ANALYSIS, Journal of JSCE, 10.2208/journalofjsce.23-16005, 12, 2, (n/a), (2024).
- Yusuke Hiraga, Yoshihiko Iseri, Michael D. Warner, Angela M. Duren, John F. England, Chris D. Frans, M. Levent Kavvas, Model‐based estimation of long‐duration design precipitation for basins with large storage volumes of reservoirs and snowpacks, Journal of Flood Risk Management, 10.1111/jfr3.12992, 17, 3, (2024).
- Yusuke Hiraga, Yoshihiko Iseri, Michael D. Warner, Angela M. Duren, John F. England, M. Levent Kavvas, Response of Precipitation Increases to Changes in Atmospheric Moisture and Its Flux in the Columbia River Basin: WRF Model–Based Precipitation Maximization for PMP Studies, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-6169, 29, 3, (2024).
- Yusuke Hiraga, M. Levent Kavvas, Synoptic Scale Controls on Warm Season Precipitation Deficit in the US Northern Rockies: A Driver of Recent Wildfire Activities, World Environmental and Water Resources Congress 2024, 10.1061/9780784485477.018, (207-220), (2024).