Abstract

Flame-retardant polymer nanocomposites exhibiting remarkably improved flame-retardant and environmentally friendly properties have been widely utilized to replace traditional halogenated fire retardants. In this review, flame retardant mechanisms of polymer nanocomposites such as barrier effect, char formation, three-dimensional nanostructure, and radical trapping, are discussed to explain how nanomaterials can be incorporated in a polymer to reduce the polymer’s flammability. Properties that are critical in governing the flame-retardant mechanisms of polymer nanocomposites are discussed in this review. Specifically, category, surface property, and concentration of nanomaterials are critical in affecting flame-retardant properties of polymer nanocomposites and are reviewed in detail. Nanocomposite categories, especially, silicates (clays), inorganic hydroxides, carbonaceous materials, metal oxides, polysilsequioxanes, and their combinations are well described. The use of synergism and surface modification of nanomaterials are important strategies for optimizing flame retardancy of polymer nanocomposites. The peak heat-release rate (HRR), the most important parameter for predicting fire hazard, is widely involved in this review.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by Grand Challenge Explorations (Bill & Melinda Gates Foundation) (Grant No. OPP1036029) and National Natural Science Foundation of China (Grants Nos. 50978069, 81171495, and 81271765).

References

Alarie, Y. (2002). “Toxicity of fire smoke.” Crit. Rev. Toxicol., 32(4), 259–289.
Alexandre, M., and Dubois, P. (2000). “Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials.” Mater. Sci. Eng. R Rep., 28(1–2), 1–63.
Bao, C. L., Song, L., Guo, Y. Q., and Hu, Y. (2011). “Preparation and characterization of flame-retardant polypropylene/alpha-titanium phosphate (nano)composites.” Polym. Adv. Technol., 22(7), 1156–1165.
Beyer, G. (2001). “Nanocomposites: A new concept for flame retardant polymers.” Polym. News, 26, 370–378.
Beyer, G. (2002). “Short communication: Carbon nanotubes as flame retardants for polymers.” Fire Mater., 26(6), 291–293.
Beyer, G. (2005). “Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications.” Fire Mater., 29(2), 61–69.
Beyer, G. (2006). “Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate.” Polym. Adv. Technol., 17(4), 218–225.
Bourbigot, S., Duquesne, S., and Jama, C. (2006). “Polymer nanocomposites: How to reach low flammability?” Macromol. Symp., 233(1), 180–190.
Bourbigot, S., Le Bras, M., Duquesne, S., and Rochery, M. (2004). “Recent advances for intumescent polymers.” Macromol. Mater. Eng., 289(6), 499–511.
Bourbigot, S., Le Bras, M., Flambard, X., Rochery, M., Devaux, E., and Lichtenhan, J. D. (2005). Fire retardancy of polymers: New applications of mineral fillers, M. Le Bras, S. Bourbigot, S. Duquesne, C. Jama, and C. A. Wilkie, eds., Royal Society of Chemistry, Cambridge, U.K., 189.
Bourbigot, S., Turf, T., Bellayer, S., and Duquesne, S. (2009). “Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane.” Polym. Degrad. Stab., 94(8), 1230–1237.
Canosa, G., Alfieri, P. V., and Giudice, C. A. (2011). “Nano lithium silicates as flame-retardant impregnants for Pinus radiate.” J. Fire Sci., 29(5), 431–441.
Carosio, F., Laufer, G., Alongi, J., Camino, G., and Grunlan, J. C. (2011). “Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric.” Polym. Degrad. Stab., 96(5), 745–750.
Chang, Z. H., Guo, F., Chen, J. F., Yu, J. H., and Wang, G. Q. (2007). “Synergistic flame retardant effects of nano-kaolin and nano-HAO on LDPE/EPDM composites.” Polym. Degrad. Stab., 92(7), 1204–1212.
Chen, Y. J., et al. (2010). “Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent.” Ind. Eng. Chem. Res., 49(17), 8200–8208.
Cheng, X. E., Liu, S. Y., and Shi, W. F. (2009). “Synthesis and properties of silsesquioxane-based hybrid urethane acrylate applied to UV-curable flame-retardant coatings.” Progress Org. Coat., 65(1), 1–9.
Chigwada, G., Jash, P., Jiang, D. D., and Wilkie, C. A. (2005a). “Fire retardancy of vinyl ester nanocomposites: Synergy with phosphorus-based fire retardants.” Polym. Degrad. Stab., 89(1), 85–100.
Chigwada, G., Jash, P., Jiang, D. D., and Wilkie, C. A. (2005b). “Synergy between nanocomposite formation and low levels of bromine on fire retardancy in polystyrenes.” Polym. Degrad. Stab., 88(3), 382–393.
Chigwada, G., Jiang, D. D., and Wilkie, C. A. (2005c). “Polystyrene nanocomposites based on carbazole-containing surfactants.” Thermochim Acta, 436(1–2), 113–121.
Chiu, Y. C., Tsai, H. C., and Imae, T. (2012). “Thermal degradation analysis of the isocyanate polyhedral oligomeric silsequioxanes (POSS)/sulfone epoxy nanocomposite.” J. App. Polym. Sci., 124(2), 1234–1240.
Cichy, B., Stechman, M., Nowak, M., Kuzdzal, E., and Turkowska, M. (2011). “Halogen-free nano and micro flame retardants.” Przemysl Chemiczny, 90(5), 714–719.
Cipiriano, B. H., et al. (2007). “Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites.” Polymer, 48(20), 6086–6096.
Costa, F. R., Saphiannikova, M., Wagenknecht, U., and Heinrich, G. (2008). “Layered double hydroxide based polymer nanocomposites, wax crystal control: nanocomposites, stimuli-responsive polymers.” Adv. Polym. Sci., 210, 101–168.
Daimatsu, K., et al. (2007). “Preparation and physical properties of flame retardant acrylic resin containing nano-sized aluminum hydroxide.” Polym. Degrad. Stab., 92(8), 1433–1438.
Devaux, E., Rochery, M., and Bourbigot, S. (2002). “Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics.” Fire Mater., 26(4–5), 149–154.
de Wit, C. A. (2002). “An overview of brominated flame retardants in the environment.” Chemosphere, 46(5), 583–624.
Didane, N., Giraud, S., Devaux, E., and Lemort, G. (2012a). “A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy.” Polym. Degrad. Stab., 97(3), 383–391.
Didane, N., Giraud, S., Devaux, E., and Lemort, G. (2012b). “Development of fire resistant PET fibrous structures based on phosphinate-POSS blends.” Polym. Degrad. Stab., 97(6), 879–885.
Ding, Y. Y., Xu, L., and Hu, G. S. (2011). “Performance of halogen-free flame retardant EVA/MH/LDH composites with nano-LDHs and MH.” Chin. Sci. Bull., 56(35), 3878–3883.
Du, B. X., and Fang, Z. P. (2011). “Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene.” Polym. Degrad. Stab., 96(10), 1725–1731.
Du, J. X., Wang, J. Q., Su, S. P., and Wilkie, C. A. (2004). “Additional XPS studies on the degradation of poly(methyl methacrylate) and polystyrene nanocomposites.” Polym. Degrad. Stab., 83(1), 29–34.
Du, J. X., Zhu, J., Wilkie, C. A., and Wang, J. Q. (2002). “An XPS investigation of thermal degradation and charring on PMMA clay nanocomposites.” Polym. Degrad. Stab., 77(3), 377–381.
Durin-France, A., Ferry, L., and Crespy, A. (2000). “Magnesium hydroxide/zinc borate/talc compositions as flame-retardants in EVA copolymer.” Polym. Int., 49(10), 1101–1105.
Fu, M. Z., and Qu, B. J. (2004). “Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends.” Polym. Degrad. Stab., 85(1), 633–639.
Giannelis, E. P. (1996). “Polymer layered silicate nanocomposites.” Adv. Mater., 8(1), 29–35.
Gilman, J. W., Harris, R. H., Jr., Shields, J. R., Kashiwagi, T., and Morgan, A. B. (2006). “A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: Layered silicate reinforced carbonaceous char.” Polym. Adv. Technol., 17(4), 263–271.
Gilman, J. W., Jackson, C. L., Morgan, A. B., and Harris, R., Jr. (2000). “Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites.” Chem. Mater., 12(7), 1866–1873.
Gilman, J. W., Kashiwagi, T., and Lichtenhan, J. D. (1997). “Nanocomposites: A revolutionary new flame retardant approach.” Sample J., 33, 40–46.
Giudice, C. A., and Pereyra, A. M. (2010). “Silica nanoparticles in high silica/alkali molar ratio solutions as fire-retardant impregnants for woods.” Fire Mater., 34(4), 177–187.
Gui, H., et al. (2007). “Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites.” Compos. Sci. Eng. Technol., 67(6), 974–980.
Hapuarachchi, T. D., Bilotti, E., Reynolds, C. T., and Peijs, T. (2011). “The synergistic performance of multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for unsaturated polyester.” Fire Mater., 35(3), 157–169.
Hapuarachchi, T. D., and Peijs, T. (2010). “Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites.” Compos. A Appl. Sci. Manufact., 41(8), 954–963.
Hirschler, M. M. (2000). “Chemical aspects of thermal decomposition.” Fire retardancy of polymeric materials, A. F. Grand and C. A. Wilkie, eds., Marcel Dekker, New York, 27–79.
Hirschler, M. M. (2001). “Fire performance of organic polymers, thermal decomposition, and chemical composition.” Fire and polymers: Materials and solutions for hazard prevention, G. L. Nelson and C. A. Wilkie, eds., Vol. 797, American Chemical Society, Washington, DC, 293–306.
Horn, W. E., Jr. (2000). “Inorganic hydroxides and hydroxycarbonates: Their function and use as flame retardant additives.” Fire retardancy of polymeric materials, A. F. Grand and C. A. Wilkie, eds., Marcel Dekker, New York, 285–352.
Hornsby, P. R., and Rothon, R. N. (2005). “Fire retardant fillers for polymers.” Fire retardancy of polymers: New applications of mineral fillers, M. Le Bras, C. A. Wilkie, S. Bourbigot, S. Duquesne, and C. Jama, eds., Royal Society of Chemistry, London, 19–41.
Hu, Y. C., Wu, Z. P., Sun, H. Z., Zhou, Y., and Liu, Y. (2006). “Synthesis of nano zinc borate fire retardant by solid state reaction.” J. Inorg. Mater., 21(4), 815–820.
Huang, G. B., Gao, J. R., Li, Y. J., Han, L., and Wang, X. (2010). “Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane.” Polym. Degrad. Stab., 95(2), 245–253.
Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R. E. (2006). “Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview.” J. Comp. Mater., 40, 1511–1575.
Irvine, D. J., McCluskey, J. A., and Robinson, I. M. (2000). “Fire hazards and some common polymers.” Polym. Degrad. Stab., 67(3), 383–396.
Isitman, N. A., and Kaynak, C. (2010). “Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate).” Polym. Degrad. Stab., 95(9), 1523–1532.
Jiao, C. M., and Chen, X. L. (2011). “Influence of fumed silica on the flame-retardant properties of ethylene vinyl acetate/aluminum hydroxide composites.” J. App. Polym. Sci., 120(3), 1285–1289.
Jin, D. L., Gu, X. Y., Yu, X. J., Ding, G. S., Zhu, H. L., and Yao, K. H. (2008). “Hydrothermal synthesis and characterization of hexagonal Mg(OH)2 nano-flake as a flame retardant.” Mater. Chem. Phys., 112(3), 962–965.
Kashiwagi, T., et al. (2003). “Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite.” J. Appl. Polym. Sci., 89(8), 2072–2078.
Kashiwagi, T., et al. (2004). “Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites.” Polymer, 45(12), 4227–4239.
Kashiwagi, T., Du, F. M., Douglas, J. F., Winey, K. I., Harris, R. H., and Shields, J. R. (2005a). “Nanoparticle networks reduce the flammability of polymer nanocomposites.” Nat. Mater., 4(12), 928–933.
Kashiwagi, T., and Gilman, J. W. (2001). “Silicon-based flame retardants.” Specialty polymer additives: Principles and applications, S. Al-Malaika, A. Golovoy, and C. A. Wilkie, eds., Blackwell Science, Oxford, England, 353–389.
Kashiwagi, T., Gilman, J. W., Butler, K. M., Harris, R. H., Shields, J. R., and Asano, A. (2000). “Flame retardant mechanism of silica gel/silica.” Fire Mater., 24(6), 277–289.
Kashiwagi, T., Grulke, E., Hilding, J., Harris, R., Awad, W., and Douglas, J. (2002). “Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites.” Macromol. Rapid Commun., 23(13), 761–765.
Kashiwagi, T., et al. (2008). “Relation between the viscoelastic and flammability properties of polymer nanocomposites.” Polymer, 49(20), 4358–4368.
Kashiwagi, T., et al. (2005b). “Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration.” Polymer, 46(2), 471–481.
Ke, Y. C., and Stroeve, P. (2005). Polymer-layered silicate and silica nanocomposites, Elsevier, New York.
Kojima, Y., et al. (1993). “Mechanical properties of nylon-6 clay hybrid.” J. Mater. Res., 8(05), 1185–1189.
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O. (2003). “Synthesis of nylon 6—clay hybrid by montmorillonite intercalated with -caprolactam.” J. Polym. Sci., 31(4), 983–986.
Laachachi, A., Leroy, E., Cochez, M., Ferriol, M., and Lopez Cuesta, J. M. (2005). “Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate).” Polym. Degrad. Stab., 89(2), 344–352.
Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J-M., and Dubois, P. (2009). “New prospects in flame retardant polymer materials: From fundamentals to nanocomposites.” Mater. Sci. Eng. R., 63(3), 100–125.
Lee, C. H., Liu, J. Y., Chen, S. L., and Wang, Y. Z. (2007). “Miscibility and properties of acid-treated multi-walled carbon nanotubes/polyurethane nanocomposites.” Polymer J., 39(2), 138–146.
Lee, S. K., Bai, B. C., Im, J. S., In, S. J., and Lee, Y. S. (2010). “Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube.” J. Ind. Eng. Chem., 16(6), 891–895.
Lefebvre, J., Le Bras, M., and Bourbigot, S. (2005). Fire retardancy of polymers: New applications of mineral fillers, M. Le Bras, S. Bourbigot, S. Duquesne, C. Jama, and C. A. Wilkie, eds., Royal Society of Chemistry, Cambridge, U.K., 42.
Lessan, F., Montazer, M., and Moghadam, M. B. (2011). “A novel durable flame-retardant cotton fabric using sodium hypophosphite, nano TiO2 and maleic acid.” Thermochimica Acta, 520(1–2), 48–54.
Levchik, S., and Wilkie, C. A. (2000). “Char formation.” Fire retardancy of polymeric materials, A. F. Grand and C. A. Wilkie, eds., Marcel Dekker, New York, 171–215.
Levchik, S. V., Levchik, G. F., Camino, G., and Costa, L. (1995). “Mechanism of action of phosphorus-based flame retardants in nylon-6. 2. Ammonium polyphosphate talc.” J. Fire Sci., 13(1), 43–58.
Lewin, M. (1998). Fire retardancy of polymers: The use of intumescence, M. Le Bras, G. Camino, S. Bourbigot, and R. Delobel, eds., Royal Chemical Society, Cambridge, U.K., 3.
Lewin, M. (2005). “Unsolved problems and unanswered questions in flame retardance of polymers.” Polym. Degrad. Stab., 88(1), 13–19.
Li, J., Wei, P., Li, L. K., Qian, Y., Wang, C., and Huang, N. H. (2011a). “Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene.” Fire Mater., 35(2), 83–91.
Li, X. G., Wu, Y. Q., and Zheng, X. (2011b). “Effect of nano anhydrous magnesium carbonateon fire-retardant performance of polylactic acid/bamboo fibers composites.” J. Nanosci. Nanotechnol., 11(12), 10620–10623.
Liang, J. Z., Chen, Y., and Jiang, X. H. (2012). “Flame-retardant properties of PP/Al(OH)3/Mg(OH)2/POE/ZB nanocomposites.” Polym. Plast. Technol. Eng., 51(5), 439–445.
Lin, M., Li, B., Li, Q., Li, S., and Zhang, S. (2011). “Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes.” J. Appl. Polym. Sci., 121(4), 1951–1960.
Liu, B., Jiang, C. M., Zhang, C. L., Bai, X. T., and Mu, J. X. (2012a). “Octasilsesquioxane-reinforced TMBP epoxy nanocomposites: Characterization of thermal, flame-retardant, and morphological properties.” High Perform. Polym., 24(8), 747–755.
Liu, H. M., Wang, R., and Xu, X. (2011). “Static and dynamic mechanical properties of flame-retardant copolyester/nano-ZnCO3 composites.” J. Appl. Polym. Sci., 121(6), 3131–3136.
Liu, M. F., Wang, Q., Liu, Y. A. (2010). “Flame-retardant polypropylene composites with magnesium hydroxide encapsulated by polypropylene grafted with maleic anhydride.” Polym. Plast. Technol. Eng., 49(4), 367–372.
Liu, Y., Li, J., and Wang, Q. (2008). “Solid state shear milling to prepare magnesium hydroxide flame-retardant polyamide 6 with high performance.” Mater. Manufact. Process, 23(3), 284–288.
Liu, Y., and Wang, Q. (2010). “The investigation of melamine cyanurate-encapsulating magnesium hydroxide flame retarded polyamide-66.” Polym. Polym. Compos., 18(6), 253–258.
Liu, Y., Wang, Z. Y., and Wang, Q. (2012d). “Effects of magnesium hydroxide and its synergistic systems on the flame retardance of polyformaldehyde.” J. Appl. Polym. Sci., 125(2), 968–974.
Longerey, M., Cuesta, J. M. L., Gaudon, P., and Crespy, A. (1999). “Talcs and brominated trimethylphenyl indane/Sb2O3 blend in a PP-PE copolymer.” Polym. Degrad. Stab., 64(3), 489–496.
Lu, H. D., and Wilkie, C. A. (2010). “Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene.” Polym. Degrad. Stab., 95(4), 564–571.
Ma, H. Y., Tong, L. F., Xu, Z. B., and Fang, Z. P. (2007). “Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability.” Polym. Degrad. Stab., 92(8), 1439–1445.
Ma, H. Y., Tong, L. F., Xu, Z. B., and Fang, Z. P. (2008). “Functionalizing carbon nanotubes by grafting on intumescent flame retardant: Nanocomposite synthesis, morphology, rheology, and flammability.” Adv. Funct. Mater., 18(3), 414–421.
Manzi-Nshuti, C., Songtipya, P., Manias, E., Jimenez-Gasco, M. M., Hossenlopp, J. M., and Wilkie, C. A. (2009). “Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers.” Polymer, 50(15), 3564–3574.
Morgan, A. B., and Putthanarat, S. (2011). “Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide.” Polym. Degrad. Stab., 96(1), 23–32.
Morley, J. C. (1993). “Flame retardants and smoke suppressants.” Handbook of polyvinyl chloride formulating, E. J. Wickson, ed., Wiley, New York, 551–577.
Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S., and Dubois, P. (2010). “New trends in polylactide (PLA)-based materials: Green PLA-calcium sulfate (nano)composites tailored with flame retardant properties.” Polym. Degrad. Stab., 95(3), 374–381.
Ni, J. X., Chen, L. J., Zhao, K. M., Hu, Y., and Song, L. (2011). “Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites.” Polym. Adv. Tech., 22(12), 1824–1831.
Nyambo, C., Chen, D., Su, S., and Wilkie, C. A. (2009). “Does organic modification of layered double hydroxides improve the fire performance of PMMA?” Polym. Degrad. Stab., 94(8), 1298–1306.
Okamoto, M. (2006). “Recent advances in polymer/layered silicate nanocomposites: An overview from science to technology.” Mater. Sci. Technol., 22(7), 756–779.
Okoshi, M., and Nishizawa, H. (2004). “Flame retardancy of nanocomposites.” Fire Mater., 28(6), 423–429.
Oyama, H. T., Sekikawa, M., and Shida, S. (2012). “Effect of the interface structure on the morphology and the mechanical, thermal, and flammability properties of polypropylene/poly(phenylene ether)/magnesium hydroxide composites.” Polym. Degrad. Stab., 97(5), 755–765.
Patel, P., et al. (2012). “Flammability properties of PEEK and carbon nanotube composites.” Polym. Degrad. Stab., 97(12), 2492–2502.
Pavlidou, S., and Papaspyrides, C. D. (2008). “A review on polymer-layered silicate nanocompopsites.” Prog. Polym. Sci., 33(12), 1119–1198.
Peeterbroeck, S, et al. (2004). “Polymer-layered silicate-carbon nanotube nanocomposites: Unique nanofiller synergistic effect.” Compos. Sci. Technol., 64(15), 2317–2323.
Peeterbroeck, S., et al. (2007a). “How carbon nanotubes crashing can improve flame retardant behaviour in polymer nanocomposites?” Macromol. Rapid Commun., 28(3), 260–264.
Peeterbroeck, S., et al. (2007b). “Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites.” Adv. Funct. Mater., 17(15), 2787–2791.
Pereyra, A. M., Giudice, C. A., and Benitez, J. C. (2009). “Fire retardant impregnants for woods based on alkaline silicates.” Fire Safe. J., 44(4), 497–503.
Pielichowski, K., Njuguna, J., Janowski, B., and Pielichowski, J. (2006). “Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers.” Adv. Polym. Sci., 201, 225–296.
Pinnavaia, T. J., and Beall, G. W. (2001). Polymer-clay nanocomposite, Wiley, Hoboken, NJ.
Porter, D., Metcalfe, E., and Thomas, M. J. K. (2000). “Nanocomposite fire retardants: A review.” Fire Mater., 24(1), 45–52.
Pramoda, K. P., Linh, N. T. T., Tang, P. S., Tjiu, W. C., Goh, S. H., and He, C. B. (2010). “Thermo-mechanical properties of poly(vinylidene fluoride) modified graphite/poly(methyl methacrylate) nano composites.” Compos. Sci. Technol., 70(4), 578–583.
Purser, D. A. (2002). “Toxicity assessment of combustion products.” SFPE handbook of fire protection engineering, 3rd Ed., National Fire Protection Association, Quincy, MA, 2–83.
Quach, Y., Cinausero, N., Sonnier, R., Longuet, C., and Lopez-Cuesta, J. M. (2012). “Barrier effect of flame retardant systems in poly(methyl methacrylate): Study of the efficiency of the surface treatment by octylsilane of silica nanoparticles in combination with phosphorous fire retardant additives.” Fire Mater., 36(7), 590–602.
Ray, S. S., and Okamoto, M. (2003). “Polymer/layered silicate nanocomposites: A review from preparation to processing.” Prog Polym Sci., 28(11), 1539–1641.
Schartel, B., et al. (2008). “Mechanical, thermal, and fire behavior of bisphenol a polycarbonate/multiwall carbon nanotube nanocomposites.” Polym. Eng. Sci., 48(1), 149–158.
Schartel, B., Pötschke, P., Knoll, U., and Abdel-Goad, M. (2005). “Fire behavior of polyamide 6/multiwall carbon nanotube nanocomposites.” Eur. Polym. J., 41(5), 1061–1070.
Sen, A. K., and Kumar, S. (2010). “Coir-fiber-based fire retardant nano filler for epoxy composites.” J. Thermal Anal. Calorim., 101(1), 265–271.
Son, B., Hwang, T. S., and Goo, D. C. (2007). “Fire-retardation properties of polyurethane nanocomposite by filling inorganic nano flame retardant.” Polym. Korea, 31(5), 404–409.
Song, G. L., Ma, S. D., Tang, G. Y., Yin, Z. S., and Wang, X. W. (2010). “Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide.” Energy, 35(5), 2179–2183.
Song, L., Xuan, S. Y., Wang, X., and Hu, Y. (2012). “Flame retardancy and thermal degradation behaviors of phosphate in combination with POSS in polylactide composites.” Thermochimica Acta, 527, 1–7.
Song, P., Zhu, Y., Tong, L., and Fang, Z. (2008a). “C(60) reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network.” Nanotechnology, 19(22), 225707.
Song, P. A., Xu, L. H., Guo, Z. H., Zhang, Y., and Fang, Z. P. (2008b). “Flame-retardant-wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of polypropylene.” J. Mater. Chem., 18(42), 5083–5091.
Song, P. A., Zhao, L. P., Cao, Z. H., and Fang, Z. P. (2011). “Polypropylene nanocomposites based on C-60-decorated carbon nanotubes: Thermal properties, flammability, and mechanical properties.” J. Mater. Chem., 21(21), 7782–7788.
Stec, A. A., and Hull, T. R. (2007). “Toxic combustion products from fire retarded nanocomposite polymers.” Proc., 5th Int. Seminar on Fire and Explosion Hazards, School of Engineering and Electronics, Univ. of Edinburgh, U.K.
UL 94. (2013). “The standard for safety of flammability of plastic materials for parts in devices and appliances testing”.
van Klevelen, D. W. (1975). “Some basic aspects of flame resistance of polymeric materials.” Polymer, 16(8), 615–620.
Wang, B. B., et al. (2011). “Electron beam irradiation cross linking of halogen-free flame-retardant ethylene vinyl acetate (EVA) copolymer by silica gel microencapsulated ammonium polyphosphate and char-forming agent.” Ind. Eng. Chem. Res., 50(9), 5596–5605.
Wang, J. B., and Xin, Z. (2010). “Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system.” J. App. Polym. Sci., 115(1), 330–337.
Wang, L., et al. (2012a). “The impact of metal oxides on the combustion behavior of ethylene-vinyl acetate coploymers containing an intumenscent flame retardant.” Ind. Eng. Chem. Res., 51(23), 7884–7890.
Wang, L., Su, S., Chen, D., and Wilkie, C. A. (2009). “Variation of anions in layered double hydroxides: Effects on dispersion and fire properties.” Polym. Degrad. Stab., 94(5), 770–781.
Wang, L. C., and Jiang, P. K. (2011). “Thermal and flame retardant properties of ethylene-vinyl acetate copolymer/modified multiwalled carbon nanotube composites.” J. Appl. Polym. Sci., 119(5), 2974–2983.
Wang, M., Zhu, M. F., and Sun, B. (2006a). “A new nano-structured flame-retardant poly (ethylene terephthalate).” J. Macromol. Sci. A Pure Appl. Chem., 43(11), 1867–1875.
Wang, X., Song, L., Yang, H. Y., Xing, W. Y., Kandola, B., and Hua, Y. (2012b). “Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites.” J. Mater. Chem., 22(41), 22037–22043.
Wang, Z., Han, E., and Ke, W. (2005). “Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating.” Progress Org. Coat., 53(1), 29–37.
Wang, Z., Han, E., and Ke, W. (2006a). “Effect of nanoparticles on the improvement in fire-resistant and anti-ageing properties of flame-retardant coating.” Surf. Coat. Technol., 200(20–21), 5706–5716.
Wang, Z., Han, E., Ke, W. (2006b). “Study of humid tropical resistance and fire resistance of flame retardant nano-coatings used in steel structures.” Canada. Metallurg. Q., 45(4), 485–492.
Wei, P., Han, D. Z., Xu, X. N., and Li, Z. X. (2006). “Synergistic flame retardant effect of SiO2 in LLDPE, /EVA/ATH blends.” J. Fire Sci., 24(6), 487–498.
Wei, P., Hao, J. W., Du, J. X., Han, Z. D., and Wang, J. Q. (2003). “An investigation on synergism of an intumescent flame retardant based on silica and alumina.” J. Fire Sci., 21(1), 17–28.
Weil, E. D. (1975). “Additivity, synergism and antagonism in flame retardancy.” Flame retardancy of polymeric materials, W. C. Kuryla and A. J. Papa, eds., Vol. 3, Marcel Dekker, New York, 185–243.
Weil, E. D. (1999). “Synergists, adjuvants and antagonists in flame retardant systems.” Fire retardancy of polymeric materials, A. F. Grand and C. A. Wilkie, eds., Marcel Dekker, New York, 115–145.
Weil, E. D., Lewin, M., and Rao, D. (2004). “A search for an interactive flame retardant system for ethylene–vinyl acetate.” Proc., 15th Conf. on Recent Advances in Flame Retardancy of Polymeric Materials, Stanford, CT.
Wilkie, C. A., Levchik, S. V., and Levchik, G. F. (2001). “Is there a correlation between crosslinking and thermal stability?” Specialty polymer additives: Principles and application, S. Al-Malaika, A. Golovoy, and C. A. Wilkie, eds., Blackwell Science, Oxford, England, 359–374.
Winey, K. I., and Vaia, R. A. (2007). “Polymer nanocomposites.” MRS Bull., 32(04), 314–322.
Wu, K., Song, L., Hu, Y., Lu, H. D., Kandola, B. K., and Kandare, E. (2009a). “Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin.” Progress Org. Coat, 65(4), 490–497.
Wu, N, Yang, R. J., Hao, J. W., and Liu, G. S. (2009b). “Synergistic effect of metal oxides on intumescent flame-retardant PP systems.” ACTA Polymerica Sinica, 009(12), 1205–1210.
Wu, N., and Yang, R. J. (2011). “Effects of metal oxides on intumescent flame-retardant polypropylene.” Polym. Adv. Technol., 22(5), 495–501.
Wu, Q., Zhu, W., Zhang, C., Liang, Z. Y., and Wang, B. (2010). “Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites.” Carbon, 48(6), 1799–1806.
Xie, J. X., Liu, J. Z., and Xu, J. Z. (2010). “Zinc hydroxystannate coated nano-magnesium hydroxide as flame retardant for semirigid poly(vinyl chloride).” Asian J. Chem., 22(7), 5711–5715.
Xu, G. Y., Cheng, J. Y., Wu, H. Y., Lin, Z. Q., Zhang, Y. C., and Wang, H. (2013). “Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly(ethylene vinyl acetate) nanocomposites.” Polym. Compos., 34(1), 109–121.
Xu, J. Z., Zhang, C. Y., Qu, H. Q., and Tian, C. M. (2005). “Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride).” J. Appl. Polym. Sci., 98(3), 1469–1475.
Xu, S. L., Zhang, L. X., Lin, Y. J., Li, R. S., and Zhang, F. Z. (2012). “Layered double hydroxides used as flame retardant for engineering plastic acrylonitrile-butadiene–styrene (ABS).” J. Phys. Chem. Solid, 73(12), 1514–1517.
Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). “Synthesis and properties of polyimide/clay hybrid.” J. Polym. Sci. Polym. Chem., 31(10), 2493–2498.
Ye, L., Wu, Q. H., and Qu, B. J. (2010). “Synergistic effects of fumed silica on intumescent flame-retardant polypropylene.” J. Appl. Polym. Sci., 115(6), 3508–3515.
Yen, Y. Y., Wang, H. T., and Guo, W. J. (2012). “Synergistic flame retardant effect of metal hydroxide and nanoclay in EVA composites.” Polym. Degrad. Stab., 97(6), 863–869.
Yukutake, H., Kobayashi, M., Otsuka, H., and Takahara, A. (2009). “Thermal degradation behavior of polystyrene/magadiite nanocomposites prepared by surface-initiated nitroxide-mediated radical polymerization.” Polymer J., 41(7), 555–561.
Zammarano, M., et al. (2008). “Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation.” Polym. Adv. Technol., 19(6), 588–595.
Zammarano, M., Franceschi, M., Bellayer, S., Gilman, J. W., and Meriani, S. (2005a). “Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides.” Polymer, 46(22), 9314–9328.
Zammarano, M., Gilman, J. W., Franceschi, M., and Meriani, S. (2005b). Proc., 16th BCC Conf. on Flame Retardancy, M. Lewin, ed., BCC, Norwalk, CT.
Zhang, J., Jiang, D. D., and Wilkie, C. A. (2005). “Polyethylene and polypropylene nanocomposites based upon an oligomerically-modified clay.” Thermochim. Acta, 430(1–2), 107–113.
Zhang, J., Lewin, M., Pearce, E., Zammarano, M., and Gilman, J. W. (2008). “Flame retarding polyamide 6 with melamine cyanurate and layered silicates.” Polym. Adv. Technol., 19(7), 928–936.
Zhang, J., and Wilkie, C. A. (2005). “Fire retardancy of polyethylene-aluminatrihydrate containing clay as a synergist.” Polym. Adv. Tech., 16(7), 549–553.
Zhang, Q., Tian, M., Wu, Y., Lin, G., and Zhang, L. (2004). “Effect of particle size on the properties of Mg(OH)2-filled rubber composites.” J. Appl. Polym. Sci., 94(6), 2341–2346.
Zhang, R., Xiao, X. F., Tai, Q. L., Huang, H., Yang, J., and Huet, Y. (2012a). “Preparation of lignin-silica hybrids and its application in intumescent flame-retardant poly(lactic acid) system.” High Perform. Polym., 24(8), 738–746.
Zhang, T., Du, Z. J., Zou, W., Li, H. Q., and Zhang, C. (2012b). “The flame retardancy of blob-like multi-walled carbon nanotubes/silica nanospheres hybrids in poly (methyl methacrylate).” Polym. Degrad. Stab., 97(9), 1716–1723.
Zhang, Z. J., Lan, B., Mei, X. J., and Xu, C. H. (2007). “Study on fire retardant mechanism of nano-LDHs in intumescent system.” Sci. China B Chem., 50(3), 392–396.
Zhao, J., Fu, Y., and Liu, S. (2008). “Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: A review.” Polym. Polym. Compos., 16, 483–500.
Zhao, X., Wei, P., Qian, Y., Yu, H., and Liu, J. (2012a). “Effect of talc on thermal stability and flame retardancy of polycarbonate/PSBPBP composite.” J. App. Polym. Sci., 125(4), 3167–3174.
Zheng, X., Jiang, D. D., Wang, D., and Wilkie, C. A. (2005). “Methyl methacrylate oligomerically-modified clay and its poly (methyl methacrylate) nanocomposites.” Thermochim Acta, 435(2), 202–208.
Zheng, X., Jiang, D. D., Wang, D., and Wilkie, C. A. (2006a). “Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically modified clay.” Polym. Degrad. Stab., 91(2), 289–297.
Zheng, X., Jiang, D. D., and Wilkie, C. A. (2006b). “Polystyrene nanocomposites based on an oligomerically-modified clay. containing maleic anhydride.” Polym. Degrad. Stab., 91(1), 108–113.
Zhu, J., Uhl, F. M., Morgan, A. B., and Wilkie, C. A. (2001). “Studies on the mechanism by which the formation of nanocomposites enhances thermal stability.” Chem. Mater., 13(12), 4649–4654.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 19Issue 4October 2015

History

Received: Nov 14, 2013
Accepted: Dec 22, 2014
Published online: May 4, 2015
Published in print: Oct 1, 2015
Discussion open until: Oct 4, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Guobin Shan, Ph.D. [email protected]
INRS, Univ. du Quebec, Quebec, QC, Canada G1K 9A9. E-mail: [email protected]
Wenbiao Jin, Ph.D. [email protected]
Professor, Director, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, School of Civil and Environment Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China. E-mail: [email protected]
Hongxiang Chen, Ph.D. [email protected]
Professor, Director, Dept. of Dermatology, Union Hospital, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan 430022, China (corresponding author). E-mail: [email protected]
Min Zhao, Ph.D. [email protected]
Professor, Dept. of Biomedical Engineering, School of Basic Medical Science, Wuhan Univ., Wuhan, 430071, China. E-mail: [email protected]
Rao Surampalli, Ph.D., P.E., D.WRE, DEE [email protected]
Professor, Civil Engineering Dept., Univ. of Nebraska-Lincoln, Lincoln, NE 68588. E-mail: [email protected]
Anushuya Ramakrishnan, Ph.D. [email protected]
Division of Epidemiology, Human Genetics and Environmental Sciences, UT School of Public Health, Houston, TX 77054. E-mail: [email protected]
Tian Zhang, Ph.D., P.E. [email protected]
Professor, Civil Engineering Dept., Univ. of Nebraska-Lincoln, Lincoln, NE 68588. E-mail: [email protected]
Rajeshwar Dayal Tyagi, Ph.D. [email protected]
Professor, INRS, Univ. du Quebec, Quebec, QC, Canada G1K 9A9. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share