Abstract
A key challenge in designing algorithms for leakage detection and isolation in drinking water distribution systems is the performance evaluation and comparison between methodologies using benchmarks. For this purpose, the Battle of the Leakage Detection and Isolation Methods (BattLeDIM) competition was organized in 2020 with the aim to objectively compare the performance of methods for the detection and localization of leakage events, relying on supervisory control and data acquisition (SCADA) measurements of flow and pressure sensors installed within a virtual water distribution system. Several teams from academia and the industry submitted their solutions using various techniques including time series analysis, statistical methods, machine learning, mathematical programming, met-heuristics, and engineering judgment, and were evaluated using realistic economic criteria. This paper summarizes the results of the competition and conducts an analysis of the different leakage detection and isolation methods used by the teams. The competition results highlight the need for further development of methods for leakage detection and isolation, and also the need to develop additional open benchmark problems for this purpose.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
All data, models, or code generated or used during the study are available in a repository online in accordance with the FAIR data retention policies, under the European Union Public License (EUPL) v1.2: data set generation and scoring algorithm: Vrachimis and Kyriakou (2022); SCADA data set: Vrachimis et al. (2020b); and reproducible code: Vrachimis et al. (2020a).
Reproducible Results
David Watkins ran the code to reproduce the benchmark results used in the competition.
Acknowledgments
This work was supported by the European Research Council (ERC) under the ERC Synergy Grant-Water-Futures’ (Grant Agreement No. 951424); by the European Union Horizon 2020 programme Grant Agreement No. 739551 (KIOS CoE), and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital Policy; by the Interreg V-A Greece-Cyprus 2014–2020 program, co-financed by the European Union (ERDF) and National Funds of Greece and Cyprus under project “SmartWater2020”; by the WaterAnalytics Project ENTERPRISES/0916/23 which is cofinanced by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation; and by the Deutsche Forschungsgemeinschaft (DFG).
References
Adanza Dopazo, D. 2020. A leakage detection system extracting the most meaningful features with decision trees. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3906668.
Barros, D., P. Resende, B. Brentan, G. Meirelles, I. Montalvo, E. Luvizotto, and J. Izquierdo. 2020. Signal processing and optimization process for leakage detection and localization. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.4011894.
Bhowmick, S., and K. Seifert. 2020. Water leakage detection and localization: Anomaly matrix—A deterministic approach. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3906850.
Blocher, C., F. Pecci, C. Jara Arriagada, and I. Stoianov. 2020. Detecting and localizing leakage hotspots in water distribution networks via regularization of an inverse problem: An application to the battle of leakage detection and isolation methods 2020 competition. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3921800.
Casillas, M., V. Puig, L. Garza-Castañón, and A. Rosich. 2013. “Optimal sensor placement for leak location in water distribution networks using genetic algorithms.” Sensors 13 (11): 14984–15005. https://doi.org/10.3390/s131114984.
Cassa, A. M., J. E. van Zyl, and R. F. Laubscher. 2010. “A numerical investigation into the effect of pressure on holes and cracks in water supply pipes.” Urban Water J. 7 (2): 109–120. https://doi.org/10.1080/15730620903447613.
Chan, T. K., C. S. Chin, and X. Zhong. 2018. “Review of current technologies and proposed intelligent methodologies for water distributed network leakage detection.” IEEE Access 6 (12): 78846–78867. https://doi.org/10.1109/ACCESS.2018.2885444.
Cheng, T., Y. Li, F. Harrou, Y. Sun, J. Gao, and T. Leiknes. 2020. A hybrid leakage detection and isolation approach based on ensemble multivariate changepoint detection methods. Geneva: CERN Data Center. https://zenodo.org/record/3964167.
Cuguero-Escofet, M. A., V. Puig, and J. Quevedo. 2017. “Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network.” Control Eng. Pract. 63 (45): 1–12. https://doi.org/10.1016/j.conengprac.2017.03.003.
Daniel, I., J. Pesantez, S. Letzgus, M. A. Khaksar Fasaee, F. Alghamdi, E. Berglund, G. Mahinthakumar, and A. Cominola. 2022. “A sequential pressure-based algorithm for data-driven leakage identification and model-based localization in water distribution networks.” J. Water Resour. Plann. Manage. 148 (6): 04022025. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001535.
Daniel, I., J. Pesantez, S. Letzgus, M. A. Khaksar Fasaee, F. Alghamdi, K. Mahinthakumar, E. Berglund, and A. Cominola. 2020. A high-resolution pressure-driven method for leakage identification and localization in water distribution networks. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3924632.
Eliades, D. G., M. Kyriakou, S. Vrachimis, and M. M. Polycarpou. 2016. “Epanet-Matlab toolkit: An open-source software for interfacing Epanet with Matlab.” In Proc., 14th Int. Conf. on Computing and Control for the Water Industry (CCWI), 1–8. Hague, Netherlands: IWC. https://doi.org/10.5281/zenodo.831493.
Eliades, D. G., and M. M. Polycarpou. 2012. “Leakage fault detection in district metered areas of water distribution systems.” J. Hydroinf. 14 (4): 992–1005. https://doi.org/10.2166/hydro.2012.109.
Farley, B., S. R. Mounce, and J. B. Boxall. 2010. “Field testing of an optimal sensor placement methodology for event detection in an urban water distribution network.” Urban Water J. 7 (6): 345–356. https://doi.org/10.1080/1573062X.2010.526230.
Goulet, J.-A., S. Coutu, and I. F. Smith. 2013. “Model falsification diagnosis and sensor placement for leak detection in pressurized pipe networks.” Adv. Eng. Inf. 27 (2): 261–269. https://doi.org/10.1016/j.aei.2013.01.001.
Greyvenstein, B., and J. E. van Zyl. 2007. “An experimental investigation into the pressure—Leakage relationship of some failed water pipes.” J. Water Supply Res. Technol. AQUA 56 (2): 117–124. https://doi.org/10.2166/aqua.2007.065.
Huang, L., K. Du, M. Guan, W. Huang, Z. Song, and Q. Wang. 2022. “Combined usage of hydraulic model calibration residuals and improved vector angle method for burst detection and localization in water distribution systems.” J. Water Resour. Plann. Manage. 148 (7): 04022034. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001575.
Huang, L., K. Du, M. Guan, and Q. Wang. 2020. The combined usage of the hydraulic model calibration residual and an improved vectorial angle method for solving the BattLeDIM problem. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3925507.
Kabaasha, A. M., J. E. van Zyl, and G. K. Mahinthakumar. 2020. “Correcting power leakage equation for improved leakage modeling and detection.” J. Water Resour. Plann. Manage. 146 (3): 06020001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001172.
Klise, K. A., M. Bynum, D. Moriarty, and R. Murray. 2017. “A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study.” Environ. Modell. Software 95 (12): 420–431. https://doi.org/10.1016/j.envsoft.2017.06.022.
Lambert, A. 1994. “Accounting for losses: The bursts and background concept.” Water Environ. J. 8 (2): 205–214. https://doi.org/10.1111/j.1747-6593.1994.tb00913.x.
Lambert, A. 2001. “What do we know about pressure: Leakage relationships in distribution systems?” In Proc., IWA System Approach to Leakage Control Water Distribution System Management. London: International Water Association.
Li, R., H. Huang, K. Xin, and T. Tao. 2015. “A review of methods for burst/leakage detection and location in water distribution systems.” Water Sci. Technol. Water Supply 15 (3): 429–441. https://doi.org/10.2166/ws.2014.131.
Li, Z., and K. Xin. 2020. Fast localization of multiple leaks in water distribution network jointly driven by simulation and machine learning. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3911045.
Liemberger, R., and A. Wyatt. 2019. “Quantifying the global non-revenue water problem.” Water Supply 19 (3): 831–837. https://doi.org/10.2166/ws.2018.129.
Liu, R., Z. Zhang, and D. Zhang. 2020. Leakage detection and isolation in water distribution network based on data mining and genetic optimized hydraulic simulation. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3911523.
Marzola, I., F. Mazzoni, S. Alvisi, and M. Franchini. 2020. A pragmatic approach for leakage detection based on the analysis of observed data and hydraulic simulations. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3900989.
Marzola, I., F. Mazzoni, S. Alvisi, and M. Franchini. 2022. “Leakage detection and localization in a water distribution network through comparison of observed and simulated pressure data.” J. Water Resour. Plann. Manage. 148 (1): 04021096. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001503.
Min, K. W., T. Kim, Y. H. Choi, D. Jung, and J. H. Kim. 2020. A two-phase model to detect and localize water distribution system leakages. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3922019.
Mounce, S., A. Day, A. Wood, A. Khan, P. Widdop, and J. Machell. 2002. “A neural network approach to burst detection.” Water Sci. Technol. 45 (4–5): 237–246. https://doi.org/10.2166/wst.2002.0595.
Mounce, S. R., J. B. Boxall, and J. Machell. 2010. “Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows.” J. Water Resour. Plann. Manage. 136 (3): 309–318. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000030.
Perez, R., G. Sanz, V. Puig, J. Quevedo, M. A. Cuguero Escofet, F. Nejjari, J. Meseguer, G. Cembrano, J. M. Mirats Tur, and R. Sarrate. 2014. “Leak localization in water networks: A model-based methodology using pressure sensors applied to a real network in Barcelona.” IEEE Control Syst. 34 (4): 24–36. https://doi.org/10.1109/MCS.2014.2320336.
Pérez, R., V. Puig, J. Pascual, J. Quevedo, E. Landeros, and A. Peralta. 2011. “Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks.” Control Eng. Pract. 19 (10): 1157–1167. https://doi.org/10.1016/j.conengprac.2011.06.004.
Pudar, R. S., and J. A. Liggett. 1992. “Leaks in pipe networks.” J. Hydraul. Eng. 118 (7): 1031–1046. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1031).
Romero, L., J. Blesa, D. Alves, G. Cembrano, V. Puig, and E. Duviella. 2020. Leak localization in water distribution networks using data-driven and model-based approaches. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3923501.
Romero-Ben, L., D. Alves, J. Blesa, G. Cembrano, V. Puig, and E. Duviella. 2022. “Leak localization in water distribution networks using data-driven and model-based approaches.” J. Water Resour. Plann. Manage. 148 (5): 04022016. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001542.
Rossman, L., H. Woo, M. Tryby, F. Shang, R. Junke, and T. Haxton. 2020. Epanet 2.2 user manual. Cincinnati: EPA.
Saldarriaga, J., et al. 2020. Battle of the leakage detection and isolation methods: An energy method analysis using genetic algorithms. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3923227.
Soldevila, A., J. Blesa, S. Tornil-sin, E. Duviella, R. M. Fernandez-Canti, and V. Puig. 2016. “Leak localization in water distribution networks using a mixed model-based/data-driven approach.” Control Eng. Pract. 55 (7): 162–173. https://doi.org/10.1016/j.conengprac.2016.07.006.
Sophocleous, S., D. Savić, and Z. Kapelan. 2019. “Leak localization in a real water distribution network based on search-space reduction.” J. Water Resour. Plann. Manage. 145 (7): 04019024. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001079.
Steffelbauer, D. B., J. Deuerlein, D. Gilbert, E. Abraham, and O. Piller. 2022. “Pressure-leak duality for leak detection and localization in water distribution systems.” J. Water Resour. Plann. Manage. 148 (3): 04021106. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001515.
Steffelbauer, D. B., J. Deuerlein, D. Gilbert, O. Piller, and E. Abraham. 2020. A dual model for leak detection and localization. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3923907.
Tan, C. A., V. Phipatanasuphorn, and C. H. A. Lai. 2020. Deep learning of complex pipe leakages events in drinking water distribution networks for effective spatiotemporal pre-detections and isolations of leak conditions. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3902945.
Taormina, R., et al. 2018. “Battle of the attack detection algorithms: Disclosing cyber attacks on water distribution networks.” J. Water Resour. Plann. Manage. 144 (8): 04018048. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000969.
van Zyl, J. E., A. O. Lambert, and R. Collins. 2017. “Realistic modeling of leakage and intrusion flows through leak openings in pipes.” J. Hydraul. Eng. 143 (9): 04017030. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001346.
Vrachimis, S. G., D. G. Eliades, and M. S. Kyriakou. 2020a. “Battle of the Leakage Detection and Isolation Methods (BattLeDIM 2020) [Source Code].” Zenodo. Accessed September 13, 2020. https://doi.org/10.24433/CO.8332511.v1.
Vrachimis, S. G., D. G. Eliades, and M. M. Polycarpou. 2018a. “Leak detection in water distribution systems using hydraulic interval state estimation.” In Proc., 2018 IEEE Conf. on Control Technology and Applications (CCTA), 565–570. New York: IEEE.
Vrachimis, S. G., D. G. Eliades, and M. M. Polycarpou. 2018b. “Real-time hydraulic interval state estimation for water transport networks: A case study.” Drinking Water Eng. Sci. 11 (1): 19–24. https://doi.org/10.5194/dwes-11-19-2018.
Vrachimis, S. G., D. G. Eliades, R. Taormina, A. Ostfeld, Z. Kapelan, S. Liu, M. S. Kyriakou, P. Pavlou, M. Qiu, and M. Polycarpou. 2020b. “Dataset of BattLeDIM: Battle of the Leakage Detection and Isolation Methods [Data set].” Zenodo. Accessed September 7, 2020. https://doi.org/10.5281/zenodo.4017659.
Vrachimis, S. G., and M. S. Kyriakou. 2022. “KIOS-Research/BattLeDIM: BattLeDIM evaluation code and dataset generator (v1.1).” Zenodo. Accessed August 4, 2022. https://doi.org/10.5281/zenodo.6962143.
Vrachimis, S. G., M. S. Kyriakou, D. G. Eliades, and M. M. Polycarpou. 2018c. “LeakDB: A benchmark dataset for leakage diagnosis in water distribution networks description of benchmark.” In Vol 1 of Proc., WDSA/CCWI Joint Conf. Kingston, ON, Canada: Queen’s Univ.
Vrachimis, S. G., S. Timotheou, D. G. Eliades, and M. M. Polycarpou. 2019. “Iterative hydraulic interval state estimation for water distribution networks.” J. Water Resour. Plann. Manage. 145 (1): 04018087. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001011.
Vrachimis, S. G., S. Timotheou, D. G. Eliades, and M. M. Polycarpou. 2021. “Leakage detection and localization in water distribution systems: A model invalidation approach.” Control Eng. Pract. 110 (10): 104755. https://doi.org/10.1016/j.conengprac.2021.104755.
Wang, X., J. Li, S. Liu, X. Yu, and Z. Ma. 2022. “Multiple leakage detection and isolation in district metering areas using a multistage approach.” J. Water Resour. Plann. Manage. 148 (6): 04022021. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001558.
Wang, X., J. Li, X. Yu, Z. Ma, and Y. Huang. 2020. A multistage approach to detect and isolate multiple leakages in district metering areas in water distribution systems. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3924109.
Wu, Y., and S. Liu. 2017. “A review of data-driven approaches for burst detection in water distribution systems.” Urban Water J. 14 (9): 972–983. https://doi.org/10.1080/1573062X.2017.1279191.
Wu, Z. Y., and Y. He. 2020. Decomposition-based data analysis with hydraulic model calibration for leakage detection and isolation. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3908525.
Wu, Z. Y., and Y. He. 2021. “Time series data decomposition-based anomaly detection and evaluation framework for operational management of smart water grid.” J. Water Resour. Plann. Manage. 147 (9): 04021059. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001433.
Wu, Z. Y., P. Sage, and D. Turtle. 2009. “Pressure-dependent leak detection model and its application to a district water system.” J. Water Resour. Plann. Manage. 136 (1): 116–128. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:1(116).
Zaman, D., M. K. Tiwari, A. K. Gupta, and D. Sen. 2019. “A review of leakage detection strategies for pressurised pipeline in steady-state.” Eng. Fail. Anal. 109 (1): 104264. https://doi.org/10.1016/j.engfailanal.2019.104264.
Zhang, W., J. Liu, L. Han, Y. Li, X. Li, Z. Shi, J. Yu, and J. Wang. 2020. A real time method to detect the burst location of urban water supply network. Geneva: CERN Data Center. https://doi.org/10.5281/zenodo.3923929.
Information & Authors
Information
Published In
Copyright
© 2022 American Society of Civil Engineers.
History
Received: Jun 7, 2021
Accepted: Jun 9, 2022
Published online: Sep 29, 2022
Published in print: Dec 1, 2022
Discussion open until: Feb 28, 2023
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Cited by
- Martin Oberascher, Amin Minaei, Robert Sitzenfrei, Graph-Based Genetic Algorithm for Localization of Multiple Existing Leakages in Water Distribution Networks, Journal of Water Resources Planning and Management, 10.1061/JWRMD5.WRENG-6644, 151, 1, (2025).
- Daniel Barros, Ariele Zanfei, Andrea Menapace, Gustavo Meirelles, Manuel Herrera, Bruno Brentan, Leak detection and localization in water distribution systems via multilayer networks, Water Research X, 10.1016/j.wroa.2024.100280, 26, (100280), (2025).
- Janine Strotherm, Inaam Ashraf, Barbara Hammer, Fairness-enhancing classification methods for non-binary sensitive features— How to fairly detect leakages in water distribution systems , PeerJ Computer Science, 10.7717/peerj-cs.2317, 10, (e2317), (2024).
- Meriem Adraoui, El Bachir Diop, Seyid Abdellahi Ebnou Abdem, Rida Azmi, Jérôme Chenal, Towards an Understanding of Hydraulic Sensitivity: Graph Theory Contributions to Water Distribution Analysis, Water, 10.3390/w16050646, 16, 5, (646), (2024).
- Ivo Daniel, David Steffelbauer, Ella Steins, Jonas Schorr, Sophie Persigehl, Enrique Campbell, Johannes Koslowski, Jens Kley-Holsteg, Bernd Lindemann, Andrea Cominola, iOLE—Human-Centered Software Design for Leakage Detection in Water Distribution Networks, The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 10.3390/engproc2024069207, (207), (2024).
- Bulat Kerimov, Vincent Pons, Spyros Pritsis, Riccardo Taormina, Franz Tscheikner-Gratl, Sensor Placement and State Estimation in Water Distribution Systems Using Edge Gaussian Processes, The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 10.3390/engproc2024069150, (150), (2024).
- Enrique Campbell, Edo Abraham, Johannes Koslowski, Olivier Piller, David B. Steffelbauer, The Dual Model under Pressure: How Robust Is Leak Detection under Uncertainties and Model Mismatches?, The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 10.3390/engproc2024069089, (89), (2024).
- Sotirios Paraskevopoulos, Stelios G. Vrachimis, Marios S. Kyriakou, Mirjam Blokker, Patrick Smeets, Demetrios G. Eliades, Marios Polycarpou, Gertjan Medema, An Innovative Model-Based Methodology for Rapid Response to Drinking Water Contamination Events, The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024), 10.3390/engproc2024069045, (45), (2024).
- Fabian Hinder, Valerie Vaquet, Barbara Hammer, One or two things we know about concept drift—a survey on monitoring in evolving environments. Part B: locating and explaining concept drift, Frontiers in Artificial Intelligence, 10.3389/frai.2024.1330258, 7, (2024).
- Fabian Hinder, Valerie Vaquet, Barbara Hammer, One or two things we know about concept drift—a survey on monitoring in evolving environments. Part A: detecting concept drift, Frontiers in Artificial Intelligence, 10.3389/frai.2024.1330257, 7, (2024).
- See more