Chapter
Oct 12, 2015
Chapter 1

Fundamental Characteristics and Their Influence on Fate and Behavior of Nanomaterials in Environments

Publication: Nanomaterials in the Environment

Abstract

Designed to have very specific properties, engineered nanomaterials (NMs) are tailor made through chemical processes, physical processes, or both, and may be released into the environment primarily through industrial and environmental applications or during improper handling. Because of their nanoscale size, NMs may possess unique chemical, biological, and physical properties as compared with larger particles of the same material, which gives them an edge in diverse applications. This chapter discusses the fundamental properties of NMs and some of the phenomena that determine their fate, transport, and behavior in the environment. For example, processes such as agglomeration can drastically change the surface behavior of NMs. In addition, surface adsorption of different organic or inorganic entities may have substantial influence on the fate of NMs.

Get full access to this chapter

View all available purchase options and get full access to this chapter.

References

Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., and Uddin, M. S. (2011). “Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies.” J. Hazard. Mater., 185(2–3), 1177–1186.
Banerjee, S. S. and Chen, D.-H. (2007). “Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent.” J. Hazard. Mater., 147(3), 792–799.
Barakat, M. A. (2011). “New trends in removing heavy metals from industrial wastewater.” Arabian J. Chem., 4(4), 361–377.
Brar, S. K., Verma, M., Tyagi, R. D., and Surampalli, R. Y. (2010). “Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts.” Waste Manage., 30(3), 504–520.
Burklew, C. E., Ashlock, J., Winfrey, W. B., and Zhang, B. (2012). “Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of Tobacco Nicotiana tabacum.” PLoS One, 7(5), e34783.
Chang, C. F., Lin, P. H., and Höll, W. (2006). “Aluminum-type superparamagnetic adsorbents: Synthesis and application on fluoride removal.” Colloids Surf., A, 280(1-3), 194–202.
Chen, D. H. and Huang, S. H. (2004). “Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles.” Process Biochem., 39(12), 2207–2211.
Chen, K. L. and Elimelech, M. (2006). “Aggregation and deposition kinetics offullerene (C60) nanoparticles.” Langmuir, 22(26), 10994–11001.
Chen, W., Duan, L., and Zhu, D. (2007). “Adsorption of polar and nonpolar organic chemicals to carbon nanotubes.” Enviorn. Sci. Technol., 41(24), 8295–8300.
Christian, P., von der Kammer, F., Baalousha, M., and Hofmann, T. (2008). “Nanoparticles: Structure, properties, preparation and behaviour in environmental media.” Ecotoxicology, 17(5), 326–343.
Collins, D., Luxton, T., Kumar, N., Shah, S., Walker, V. K., and Shah, V. (2012). “Assessing the impact of copper and zinc oxide nanoparticles on soil: A field study.” PLoS One, 7(8), e42663.
Daou, T., et al. (2007). “Phosphate adsorption properties of magnetite-based nanoparticles.” Chem. Mater., 19(18), 4494–4505.
Das, S. K., et al. (2013). “Nano-silica fabricated with silver nanoparticles: Antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control.” Nanoscale, 5(12), 5549–5560.
Dimkpa, C. O., Calder, A., Britt, D. W., McLean, J. E., and Anderson, A. J. (2011). “Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions.” Environ. Pollut., 159(7), 1749–1756.
EPA. (2008). “Nanotechnology for site remediation fact sheet. Solid waste and emergency response.” EPA 542-F-08-009, Washington, DC.
Fan, L., Zhang, Y., Luo, C., Lu, F., Qiu, H., and Sun, M. (2012). “Synthesis and characterization of magnetic β-cyclodextrin-chitosan nanoparticles as nano-adsorbents for removal of methyl blue.” Int. J. Biol. Macromol., 50(2), 444–450.
Feynman, R. P. (1960). “There’s plenty of room at the bottom.” Eng. Sci., 23(5), 22–36.
Gajjar, P., Pettee, B., Britt, D. W., Huang, W., Johnson, W. P., and Anderson, A. J. (2009). “Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440.” J. Biol. Eng., 3(9), 1–13.
Ge, Y., Schimel, J. P., and Holden, P. A. (2012). “Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles.” Appl. Environ. Microbiol., 78(18), 6749–6758.
Gong, J. L., et al. (2009). “Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.” J. Hazard. Mater., 164(2), 1517–1522.
Gromadskaya, L., Romanova, I., Vyshnevskyi, O., and Kirillov, S. (2013). “Near-stoichiometric adsorption of phosphate by silica gel supported nanosized hematite.” ISRN Inorg. Chem., 2013, 10.
He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N., and Lin, X. (2011). “The impact of iron oxide magnetic nanoparticles on the soil bacterial community.” J. Soils Sediments, 11(8), 1408–1417.
Hu, C. W., Li, M., Cui, Y. B., Li, D. S., Chen, J., and Yang, L. Y. (2010). “Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida.” Soil Biol. Biochem., 42(4), 586–591.
Huang, S. H. and Chen, D. H. (2009). “Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent.” J. Hazard. Mater., 163(1), 174–179.
Huang, S. H., Liao, M. H., and Chen, D. H. (2006). “Fast and efficient recovery of lipase by polyacrylic acid-coated magnetic nano-adsorbent with high activity retention.” Sep. Purif. Technol., 51(2), 113–117.
Johansen, A., et al. (2008). “Effects of C60 fullerene nanoparticles on soil bacteria and protozoans.” Environ. Toxicol. Chem., 27(9), 1895–1903.
Kim, S., Lee, S., and Lee, I. (2012). “Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus.” Water Air Soil Pollut., 223(5), 2799–2806.
Klabunde, K. (2001). Nanoscale materials in chemistry, Wiley, New York.
Klaine, S. J., et al. (2008). “Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.” Environ. Toxicol. Chem., 27(9), 1825–1851.
Krug, H. F. and Wick, P. (2011). “Nanotoxicology: An interdisciplinary challenge.” Angew. Chem. Int. Ed., 50(6), 1260–1278.
Lee, W. M., Kwak, J. I., and An, Y. J. (2012). “Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity.” Chemosphere, 86(5), 491–499.
Li, S., et al. (2013). “Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes.” Ecotoxicol. Environ. Saf., 96, 168–174.
Li, Y., et al. (2007). “Carbon nanotubes-the promising adsorbent in wastewater treatment.” J. Phys. Conf. Ser., 61, 698–702.
Liao, M. H. and Chen, D. H. (2002). “Preparation and characterization of a novel magnetic nano-adsorbent.” J. Mater. Chem., 12(12), 3654–3659.
Limbach, L. K., et al. (2005). “Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations.” Environ. Sci. Technol., 39(23), 9370–9376.
Limbach, L. K., Bereiter, R., Muller, E., Krebs, R., Galli, R., and Stark, W. J. (2008). “Removal of oxide nanoparticles in a model wastewater treatment plant: Influence of agglomeration and surfactants on clearing efficiency.” Environ. Sci. Technol., 42(15), 5828–5833.
Lin, D. and Xing, B. (2007). “Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.” Environ. Pollut., 150(2), 243–250.
Luoma, S. N. (2008). “Silver nanotechnologies and the environment: Old problems or new challenges?” 〈http://www.nanotechproject.org/process/assets/files/7036/nano_pen_15_final.pdf〉 (May 2014).
Ma, Y., et al. (2011). “Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus).” Nanotoxicology, 5(4), 743–753.
Mak, S. Y. and Chen, D. H. (2004). “Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles.” Dyes Pigm., 61(1), 93–98.
Malik, A., et al. (2003). “Coaggregation among nonflocculating bacteria isolated from activated sludge.” Appl. Environ. Microbiol., 69(10), 6056–6063.
Mallikarjuna, N. and Venkataraman, A. (2003). “Adsorption of Pb2+ ions on nanosized γ-Fe2O3: Formation of surface ternary complexes on ligand complexation.” Talanta, 60(1), 139–147.
Mazumdar, H. and Ahmed, G. (2011). “Phytotoxicity effect of silver nanoparticles on Oryza sativa.” Int. J. Chem. Technol. Res., 3, 1494–1500.
Mazzotta, M., Mazzotta, A., Fernández, M., Tamborino, B., and De Filippis, G. (2011). “New toxicological patterns of nanomaterials, nanostructures and nanoparticles.” Giornale italiano di medicina del lavoro ed ergonomia, 34(3), 667–670.
Moores, A. and Goettmann, F. (2006). “The plasmon band in noble metal nanoparticles: An introduction to theory and applications.” New J. Chem., 30(8), 1121–1132.
Mulvaney, P. (1996). “Surface plasmon spectroscopy of nanosized metal particles.” Langmuir, 12(3), 788–800.
Nowack, B. and Bucheli, T. D. (2007). “Occurrence, behavior and effects of nanoparticles in the environment.” Environ. Pollut., 150(1), 5–22.
Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). “Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles.” Environ. Health Perspect., 113(7), 823–839.
Onundi, Y., Mamun, A., Al Khatib, M., Al Saadi, M., and Suleyman, A. (2011). “Heavy metals removal from synthetic wastewater by a novel nano-size composite adsorbent.” Int. J. Environ. Sci. Technol., 8(4), 799–806.
Park, K., Kittelson, D. B., Zachariah, M. R., and McMurry, P. H. (2004). “Measurement of inherent material density of nanoparticle agglomerates.” J. Nanopart. Res., 6(2), 267–272.
Pitark, J. M., Silkin, V. M., Chulkov, E. V., and Echenique, P. M. (2005). “Surface plasmons in metallic structures.” J. Opt. A: Pure Appl. Opt., 7(2), S73–S84.
Roh, J. Y., et al. (2009). “Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics.” Environ. Sci. Technol., 43(10), 3933–3940.
Rousk, J., Ackermann, K., Curling, S. F., and Jones, D. L. (2012). “Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities.” PLoS One, 7(3), e34197.
Shamim, N., Hong, L., Hidajat, K., and Uddin, M. S. (2007). “Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: Preparation and characterization.” Colloids Surf., B, 55(1), 51–58.
Sharma, Y. C., Srivastava, V., Singh, V. K., Kaul, S. N., and Weng, C. H. (2009). “Nano-adsorbents for the removal of metallic pollutants from water and wastewater.” Environ. Technol., 30(6), 583–609.
Sherif, A. (2012). “Nanoadsorbent of organic compounds based on two-and three-dimensional mesocylinder monoliths.” J. Environ. Anal. Toxicol., 2, 147.
Singh, S., Barick, K., and Bahadur, D. (2011). “Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens.” J. Hazard. Mater., 192(3), 1539–1547.
Siu, E. Y. and Andino, J. M. (2008). “Organophosphate adsorption on nanosized silica and silica/alumina: Surface interactions and behavior of adsorbents.” Nano, 3(4), 233–237.
Srivathsan, J., Sivakami, V., Ramachandran, B., Harikrishna, K., Vetriselvi, S., and Kumar, M. (2012). “Synthesis of silver nanoparticles and its effect on soil bacteria.” J. Microbiol. Biotech. Res., 2(6), 871–874.
Sterling, M. C., Jr., Bonner, J. S., Ernest, A. N., Page, C. A., and Autenrieth, R. L. (2005). “Application of fractal flocculation and vertical transport model to aquatic sol-sediment systems.” Water Res., 39(9), 1818–1830.
Teeguarden, J. G., Hinderliter, P. M., Orr, G., Thrall, B. D., and Pounds, J. G. (2007). “Particokinetics in vitro: Dosimetry considerations for in vitro nanoparticle toxicity assessments.” Toxicol. Sci., 95(2), 300–312.
Tilston, E. L., Collins, C. D., Mitchell, G. R., Princivalle, J., and Shaw, L. J. (2013). “Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil.” Environ. Pollut., 173, 38–46.
Tofighy, M. A. and Mohammadi, T. (2011). “Adsorption of divalent heavy metal ions from water using carbon nanotube sheets.” J. Hazard. Mater., 185(1), 140–147.
Upadhyayula, V. K., Deng, S., Mitchell, M. C., and Smith, G. B. (2009). “Application of carbon nanotube technology for removal of contaminants in drinking water: A review.” Sci. Total Environ., 408(1), 1–13.
Van Oss, C. J., Mohn, J. F., and Cunningham, R. K. (1978). “Influence of various physicochemical factors on hemagglutination.” Vox Sang., 34(6), 351–361.
Wang, X., Lu, J., and Xing, B. (2008). “Sorption of organic contaminants by carbon nanotubes: Influence of adsorbed organic matter.” Environ. Sci. Technol., 42(9), 3207–3212.
Wang, X. T., Guo, Y. F., Yang, L., Han, M., Zhao, J., and Cheng, X. L. (2012). “Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment.” J. Environ. Anal. Toxicol., 2(7), 1000154.
Wuister, S. F., Donega, C. M., and Meijerink, A. (2004). “Infuence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots.” J. Phys. Chem. B., 108(45), 17393–17397.
Yang, K., Zhu, L., and Xing, B. (2006). “Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials.” Environ. Sci. Technol., 40(6), 1855–1861.
Yin, L., Colman, B. P., McGill, B. M., Wright, J. P., and Bernhardt, E. S. (2012). “Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants.” PLoS One, 7(10), e47674.
Zhao, M. and Liu, P. (2008). “Adsorption behavior of methylene blue on halloysite nanotubes.” Microporous Mesoporous Mater., 112(1–3), 419–424.
Zhao, M., Tang, Z., and Liu, P. (2008). “Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite.” J. Hazard. Mater., 158(1), 43–51.

Information & Authors

Information

Published In

Go to Nanomaterials in the Environment
Nanomaterials in the Environment
Pages: 1 - 26

History

Published online: Oct 12, 2015

Permissions

Request permissions for this article.

Authors

Affiliations

Saurabh Jyoti Sarma
Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Canada
Ratul Kumar Das
Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Canada
Satinder Kaur Brar
Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Canada
Mausam Verma
CO2 Solutions Inc., Canada
Rajeshwar D. Tyagi
Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement, Canada
Rao Y. Surampalli
Global Institute for Energy, Environment and Sustainability, Lenexa, KS, USA
Tian C. Zhang
Department of Civil Engineering, University of Nebraska-Lincoln, USA

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$178.00
Add to cart

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Chapter
$35.00
Add to cart
Buy E-book
$178.00
Add to cart

Figures

Tables

Media

Share

Share

Copy the content Link

Share with email

Email a colleague

Share