Chapter 9
Behavior and Fate of Natural and Engineered Nanomaterials in Water
Publication: Nanomaterials in the Environment
Abstract
This chapter reviews the behavior and fate of some nanomaterials (NMs) in the aquatic environment. Although many attractive and beneficial applications of NMs in water and wastewater treatment exist, uncertainties over health impacts and environmental fate of these NMs need to be addressed before widespread application. The sorption of inorganic and organic matter on NMs largely depends on their partitioning behavior to nanoparticles (NPs) and colloids. Fate and behavior of NMs not only depends on the physicochemical properties of NPs, but also on the characteristics of the receiving environment. The chapter presents the most commonly used NM applications and behavior in the water environment. Stable and dispersible NMs are bioavailable, which leads to accumulation in aquatic ecosystems and toxicity where unstable (aggregate) NMs accumulate in sediments. Therefore, surface-modified NPs have been synthesized to increase the stability and prevent homo and hetero aggregation and sedimentation.
Get full access to this chapter
View all available purchase options and get full access to this chapter.
References
Ambashta, R. D. and Sillanpää, M. (2010). “Water purification using magnetic assistance: A review.” J. Hazard. Mater., 180(1–3), 38–49.
Badireddy, A. R., Hotze, E. M., Chellam, S., Alvarez, P. J. J., and Wiesner, M. R. (2007). “Inactivation of bacteriophages via photosensitization of fullerol nanoparticles.” Environ. Sci. Technol., 41(18), 6627–6632.
Barhate, R. S. and Ramakrishna, S. (2007). “Nanofibrous filtering media: Filtration problems and solutions from tiny materials.” J. Membr. Sci., 296(1–2), 1–8.
Battin, T. J., Kammer, F. V. D., Weilhartner, A., Ottofuelling, S., and Hofmann, T. (2009). “Nanostructured : Transport behavior and effects on aquatic microbial communities under environmental conditions.” Environ. Sci. Technol., 43(21), 8098–8104.
Bizi, M. (2012). “Stability and flocculation of nanosilica by convectional organic polymer.” Nat. Sci., 4(6), 372–385.
Cheng, Y., Yin, L., Lin, S., Wiesner, M., Bernhardt, E., and Liu, J. (2011). “Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight.” J. Phys. Chem., 115(11), 4425–4432.
Christensen, F. M. (2013). “Information requirements for nanomaterials-IRNANO.” The Danish Environmental Protection Agency, Denmark.
Cumberland, S. A. and Lead, J. R. (2009). “Particle size distributions of silver nanoparticles at environmentally relevant conditions.” J. Chromatogr. A, 1216(52), 9099–9105.
Delay, M., Dolt, T., Woellhaf, A., Sembritzki, R., and Frimmel, F. H. (2011). “Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength.” J. Chromatogr. A, 1218(27), 4206–4212.
Ding, X., Meneses, M. B., Albukhari, S. M., Richter, D. L., Matuana, L. M., and Heide, P. A. (2013). “Comparing leaching of different copper oxide nanoparticles and ammoniacal copper salt from wood.” Macromol. Mater. Eng., 298(12), 1335–1343.
Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., and Lead, J. R. (2010). “Silver nanoparticles: Behaviour and effects in the aquatic environment.” Environ. Int., 37(2), 517–531.
Fairbairn, E. A., Keller, A. A., Mädler, L., Zhou, D., Pokhrel, S., and Cherr, G. N. (2011). “Metal oxide nanomaterials in seawater: Linking physicochemical characteristics with biological response in sea urchin development.” J. Hazard. Mater., 192(3), 1565–1571.
French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., and Baveye, P. C. (2009). “Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles.” Environ. Sci. Technol., 43(5), 1354–1359.
Gref, R., et al. (2000). “Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption.” Colloids Surf., B, 18(3-4), 301–313.
Gorham, J. M., MacCuspie, R. I., Klein, K. L., Fairbrother, D. H., and Holbrook, R. D. (2012). “UV-induced photochemical transformations of citrate-capped silver nanoparticle suspensions.” J. Nanopart. Res., 14(10), 1–16.
Guo, D., et al. (2013). “Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions.” Biomaterials, 34(32), 7884–7894.
Hochella, M. F., Aruguete, D., Kim, B., and Madden, A. S. (2012). “Naturally occurring inorganic nanoparticles: General assessment and a global budget for one of Earth’s last unexplored geochemical components.” Nature’s nanostructures, Haibo Guo and Amanda Barnard, eds., Pan Stanford, VIC, Australia.
Hu, H. B., Wang, Z. H., and Pan, L. (2010). “Synthesis of monodisperse -silica core-shell microspheres and their application for removal of heavy metal ions from water.” J. Alloys. Compd., 492(1-2), 656–661.
Hui, Y. Y., Zhao, J. H., Yu, S. F., Pey, K. L., Ostrikov, K., and Karnik, R. (2013). “Carbon nanotube membranes with ultrahigh specific capacity for water desalination and purification.” Nat. Commun.
Hyung, H., Fortner, J. D., Hughes, J. B., and Kim, J. H. (2007). “Natural organic matter stabilizes carbon nanotubes in the aqueous phase.” Environ. Sci. Technol., 41(1), 179–184.
Hyung, H. and Kim, J. H. (2008). “Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters.” Environ. Sci. Technol., 42(12), 4416–4421.
Hyung, H. and Kim, J. K. (2009). “Dispersion of C60 in natural water and removal by conventional drinking water treatment processes.” Water Res., 43(9), 2463–2470.
Iram, M., Guo, C., Guan, Y. P., Ishfaq, A., and Liu, H. Z. (2010). “Adsorption and magnetic removal of neutral red dye from aqueous solution using hollow nanospheres.” J. Hazard. Mater., 181(1-3), 1039–1050.
Joseph, L., et al. (2011). “Removal of bisphenol A and 17a-ethinyl estradiol from landfill leachate using single walled carbon nanotubes.” Water Res., 45(13), 4056–4068.
Joseph, L., Flora, J. R. V., Yong-Gyun, P., Badawy, M., Saleh, H., and Yoon, Y. (2012). “Removal of natural organic matter from potential drinking water sources by combined coagulation and adsorption using carbon nanomaterials.” Sep. Purif. Technol., 95, 64–72.
Kang, S., Pinault, M., Pfefferle, L. D., and Elimelech, M. (2007). “Single walled carbon nanotubes exhibit strong antimicrobial activity.” Langmuir, 23(17), 8670–8673.
Keller, A. A., et al. (2010). “Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.” Environ. Sci. Technol., 44(6), 1962–1967.
Keller, A. A., McFerran, S., Lazareva, A., and Suh, S. (2013). “Global life cycle releases of engineered nanomaterials.” J. Nanopart. Res., 15(6), 1692–1709.
Kim, B., Park, C. S., Murayama, M., and Hochella, M. F. (2010). “Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products.” Environ. Sci. Technol., 44(19), 7509–7514.
Kosa, S. A., Al-Zhrani, G., and Slam, M. A. (2012). “Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline.” Chem. Eng. J., 181–182, 159–168.
Lombi, E., et al. (2013). “Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge.” Environ. Pollut., 176, 193–197.
Louie, S. M., Tilton, R. D., and Lowry, G. V. (2013). “Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation.” Environ. Sci. Technol., 47(9), 4245–4254.
Loux, N. T., Su, Y. S., and Hassan, S. M. (2011). “Issues in assessing environmental exposures to manufactured nanomaterials.” Int. J. Environ. Res. Public. Health, 8(12), 3562–3578.
Mahdavian, A. R. and Mirrahimi, M. A. S. (2010). “Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification.” Chem. Eng. J., 159(1-3), 264–271.
Marenco, A. J., Pedersen, D. B., Wang, S., Petryk, M. W., and Kraatz, H. B. (2009). “Electrochemical properties of gas-generated silver nanoparticles in the presence of cyano- and chloride-containing compounds.” Analyst, 134(10), 2021–2027.
Markus, S., Tiina-Mari, P., and Pirjo, S. (2011). “Aggregation and deposition of engineered nanoparticles in natural fresh and brackish waters.” J. Phys. Conf. Ser., 304, 012018.
Miao, S., Hyun, S. K., Zhenmeng, P., Alison, E., and Hong, Y. (2012). “Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles.” ACS Nano, 6(3), 2312–2318.
Morones, J. R., et al. (2005). “The bactericidal effect of silver nanoparticles.” Nanotechnology, 16(10), 2346–2353.
Mubarak, N. M., Sahu, J. N., Abdullah, E. C., and Jayakumar, N. S. (2013). “Removal of heavy metals from wastewater using carbon nanotubes.” Sep. Purif. Rev., 43(4), 311–338.
Nicolas, M., Bado-Nilles, A., Delalain, P., Aguerre-Chariol, O., and Pandard, P. (2013). “Ecotoxicity of non-aged and aged nanomaterials towards freshwater microalgae.” Environ. Pollut., 80, 63–70.
NIOSH (National Institute for Occupational Safety and Health). (2010). “Nanotechnology at NIOSH.” 〈http://www.cdc.gov/niosh/topics/nanotech/〉 (Mar. 2014).
Perez, S., Farre, M. L., and Barcelo, D. (2009). “Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment.” Trends Anal. Chem., 28(6), 820–832.
Petersen, E. J., Akkanen, J., Kukkonen, J. V. K., and Weber, W. J. (2009). “Biological uptake and depuration of carbon nanotubes by Daphnia magna.” Environ. Sci. Technol., 43(8), 2969–2975.
Pettitt, M. E. and Lead, J. R. (2103). “Minimum physicochemical characterisation requirements for nanomaterial regulation.” Environ. Int., 52, 41–50.
Qi, L., Xu, Z., Jiang, X., Hu, C., and Zou, X. (2004). “Preparation and antibacterial activity of chitosan nanoparticles.” Carbohydr. Res., 339(16), 2693–2700.
Quik, J. T., Velzeboer, I., Wouterse, M., Koelmans, A. A., and Van de Meent, D. (2014). “Heteroaggregation and sedimentation rates for nanomaterials in natural waters.” Water Res., 48, 269–279.
Ruparelia, J. P., Duttagupta, S. P., Chatterjee, A. K., and Mukherji, S. (2008). “Potential of carbon nanomaterials for removal of heavy metals from water.” Desalination, 232(1-3), 145–156.
Sánchez-Cortés, S., Francioso, O., Ciavatta, C., García-Ramos, J. V., and Gessa, C. (1998). “pH-dependent adsorption of fractionated peat humic substances on different silver colloids studied by surface-enhanced Raman spectroscopy.” J. Colloid. Interface, 198(2), 308–318.
Sousa, V. S. and Teixeira, M. R. (2013). “Aggregation kinetics and surface charge of CuO nanoparticles: The influence of pH, ionic strength and humic acids.” Environ. Chem., 10(4), 313–322.
Sunada, K., Kikuchi, Y., Hashimoto, K., and Fujishima, A. (1998). “Bactericidal and detoxification effects of thin film photocatalysts.” Environ. Sci. Technol., 32(5), 726–728.
U.S. EPA. (2009). “Final nanomaterial research strategy (NRS).” 〈http://www.epa.gov/ord/index.htm〉 (Mar. 2014).
U.S. EPA. (2010a). “Control of nanoscale materials under the toxic substances control act.” 〈http://www.epa.gov/oppt/nano/〉 (Mar. 2014).
U.S. EPA. (2010b). “Nanomaterial case studies: Nanoscale titanium dioxide in water treatment and in topical sunscreen (final).” EPA/600/R-09/057F, Washington, DC.
Wang, Y., Kim, J. H., Baek, J. B., Miller, G. W., and Pennell, K. D. (2012). “Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length.” Water Res., 46(14), 4521–4531.
White, B. R., Stackhouse, B. T., and Holcombe, J. A. (2009). “Magnetic γ- nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II).” J. Hazard. Mater., 161(2-3), 848–853.
Wiesner, M. R., Lowry, G. V., Alvarez, P., Dionysiou, D., and Biswas, P. (2006). “Assessing the risks of manufactured nanomaterials.” Environ. Sci. Technol., 40(14), 4336–4345.
Wiesner, M. R., et al. (2009). “Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials.” Environ. Sci. Technol., 43(17), 6458–6462.
Williams, P. R. D., Hubbell, B. J., Weber, E., Fehrenbacher, C., Hrdy, D., and Zartarian, V. (2010). “An overview of exposure assessment models used by the US environmental protection agency.” Modelling of pollutants in complex environmental systems, Vol. II, Grady Hanrahan, eds., ILM Publications, 61–131.
Xu, P., et al. (2012). “Use of iron oxide nanomaterials in wastewater treatment: A review.” Sci. Total. Environ., 424, 1–10.
Yang, K. and Xing, B. S. (2009). “Adsorption of fulvic acid by carbon nanotubes from water.” Environ. Pollut., 157(4), 1095–1100.
Yang, L., Wen, Z., Junfeng, N., and Yongsheng, C. (2013). “Surface-coating-dependent dissolution, aggregation, and reactive oxygen species (ROS) generation of silver nanoparticles under different irradiation conditions.” Environ. Sci. Technol., 47, 10293–10301.
Yong, Z., Nathan, K., and Miqin, Z. (2002). “Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.” Biomaterials, 23(7), 1553–1561.
Yu, Z. G. and Wang, W. X. (2013). “Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna.” Water Res., 47(12), 4179–4187.
Zhang, G., Ren, Z., Zhang, X., and Chen, J. (2013). “Nanostructured iron(III)-copper(II) binary oxide: A novel adsorbent for enhanced arsenic removal from aqueous solutions.” Water Res., 47(12), 4022–4031.
Zhang, T. C., Surampalli, R., and Lai, K. C. K. (2009a). “Fate and transport nanomaterials in aquatic environments.” Chapter 15, Nanotechnologies for water environment applications, T. C. Zhang, R. Surampalli, K. C. K. Lai, Z. Hu, R. D. Tyagi, and Irene Lo, eds., ASCE, Reston, VA, 474–557.
Zhang, T. C., Surampalli, R., Lai, K. C. K., Hu, Z., Tyagi, R. D., and Lo, I., eds. (2009b). Nanotechnologies for water environment applications, ASCE, Reston, VA.
Information & Authors
Information
Published In
Copyright
© 2015 American Society of Civil Engineers.
History
Published online: Oct 12, 2015
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.