Probabilistic Seismic Hazard Analysis for Andalusian Dams in Southern Spain Using New Seismogenic Zones
Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 8, Issue 3
Abstract
The importance of developing accurate seismic analysis for dams becomes crucial, especially in active seismic zones. In this research, a probabilistic seismic hazard analysis (PSHA) for 48 Spanish dams in the Andalusian region (southern Spain) has been carried out. The selected dams (25 concrete + 23 embankment dams) fulfill the double requirement of being higher than 61.0 m and having a reservoir capacity greater than . Seismogenic parameters have been retrieved from the new seismogenic zones established in 2015, considering the soil homogeneously as rocky. Furthermore, return periods and structural periods range from 500.0 to 5,000.0 years and from 0 to 4.0 s, respectively. Results are plotted in terms of peak grand accelerations (PGAs) and pseudospectra accelerations (PSAs) for each dam. A disaggregation analysis was carried out to provide the contribution of hazard for magnitude and distance pair. The results allowed a possible PGA and return period in any point in Andalusian region to be obtained by linear interpolations. A double dimension for results is provided: first, uniform hazard spectra (UHS) are provided indicating the probability of exceeding the spectral acceleration in each spectral period is constant at a certain site; then, disaggregated results indicate the right combination of magnitude and distance that contribute the more to the seismic hazard at a specific site, for a given intensity measure, and at a certain level of intensity.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.
Acknowledgments
The first author acknowledges the Itecons institute, Coimbra, Portugal, for the Wolfram Mathematica license and the University of Coimbra (UC), Portugal, to pay the rights (when applicable) to completely download all papers in the references.
References
Agurto-Detzel, H., M. Bianchi, M. Assumpção, M. Schimmel, B. Collaço, C. Ciardelli, J. R. Barbosa, and J. Calhau. 2016. “The tailing dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence.” Geophys. Res. Lett. 43 (10): 4929–4936. https://doi.org/10.1002/2016GL069257.
Akkose, M., and E. Simsek. 2010. “Non-linear seismic response of concrete gravity dams to near-fault ground motions including dam-water-sediment-foundation interaction.” Appl. Math. Modell 34 (11): 3685–3700. https://doi.org/10.1016/j.apm.2010.03.019.
Altarejos-García, L., I. Escuder-Bueno, and A. Morales-Torres. 2015. “Advances on the failure analysis of the dam-foundation interface of concrete dams.” Materials 8 (12): 8255–8278. https://doi.org/10.3390/ma8125442.
Ansal, A., A. Akinci, G. Cultrera, M. Erdik, V. Pessina, G. Tönük, and G. Ameri. 2009. “Loss estimation in Istanbul based on deterministic earthquake scenarios of the Marmara Sea region (Turkey).” Soil Dyn. Earthquake Eng. 29 (4): 699–709. https://doi.org/10.1016/j.soildyn.2008.07.006.
Assumpção, M., J. C. Dourado, L. C. Ribotta, W. U. Mohriak, F. L. Dias, and J. R. Barbosa. 2011. “The São Vicente earthquake of 2008 April and seismicity in the continental shelf off SE Brazil: Further evidence for flexural stresses.” Geophys. J. Int. 187 (3): 1076–1088. https://doi.org/10.1111/j.1365-246X.2011.05198.x.
Assumpção, M., and V. Sacek. 2013. “Intra-plate seismicity and flexural stresses in central Brazil.” Geophys. Res. Lett. 40 (3): 487–491. https://doi.org/10.1002/grl.50142.
Bazzurro, P., and C. Allin Cornell. 1999. “Disaggregation of seismic hazard.” Bull. Seismol. Soc. Am. 89 (2): 501–520. https://doi.org/10.1785/BSSA0890020501.
Benito, B., et al. 2007. “An overview of the damaging and low magnitude M w 4.8 La Paca earthquake on 29 January 2005: Context, seismotectonics, and seismic risk implications for southeast Spain.” Bull. Seismol. Soc. Am. 97 (3): 671–690. https://doi.org/10.1785/0120050150.
Benito, B., and J. M. Gaspar-Escribano. 2007. “Ground motion characterization and seismic hazard assessment in Spain: Context, problems and recent developments.” J. Seismolog. 11 (4): 433–452. https://doi.org/10.1007/s10950-007-9063-1.
Benito, M. B., M. Navarro, F. Vidal, J. Gaspar-Escribano, M. J. García-Rodríguez, and J. M. Martínez-Solares. 2010. “A new seismic hazard assessment in the region of Andalusia (Southern Spain).” Bull. Earthquake Eng. 8 (4): 739–766. https://doi.org/10.1007/s10518-010-9175-9.
Bommer, J. J., and A. B. Acevedo. 2004. “The use of real earthquake accelerograms as input to dynamic analysis.” J. Earthquake Eng. 8 (spec01): 43–91. https://doi.org/10.1080/13632460409350521.
Bommer, J. J., F. Scherbaum, H. Bungum, F. Cotton, F. Sabetta, and N. A. Abrahamson. 2005. “On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis.” Bull. Seismol. Soc. Am. 95 (2): 377–389. https://doi.org/10.1785/0120040073.
Borges, R. G., M. S. de Assumpção, M. C. de Almeida, and M. D. Almeida. 2020. “Seismicity and seismic hazard in the continental margin of southeastern Brazil.” J. Seismolog. 24 (6): 1205–1224. https://doi.org/10.1007/s10950-020-09941-4.
CEN (European Committee for Standardization). 2004. Eurocode 8: Design of structures for earthquake resistance: Part 1: General rules, seismic actions and rules for buildings. BS EN 1998-1:2004. Brussels, Belgium: CEN.
Chakrabarti, P., and A. K. Chopra. 1973. “Earthquake analysis of gravity dams including hydrodynamic interaction.” Earthquake Eng. Struct. Dyn. 2 (2): 143–160. https://doi.org/10.1002/eqe.4290020205.
Chang, Y. W., C. H. Loh, and W. Y. Jean. 2017. “Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan.” Terr. Atmos. Oceanic Sci. 28 (6): 815–831. https://doi.org/10.3319/TAO.2017.02.08.01.
Clough, R. W., and J. Penzien. 2003. Dynamics of structures. New York: McGraw-Hill.
Cornell, C. A. 1968. “Engineering seismic risk analysis.” Bull. Seismol. Soc. Am. 58 (5): 1583–1606. https://doi.org/10.1785/BSSA0580051583.
de Membrillera, M. G., I. E. Bowles, E. Triana, and L. Altarejos. 2007. “Justification for an operating restriction in Spain incorporating Ancold guidelines on risk assessment.” In Vol. 137 of ANCOLD bulletin, 41. Sydney, Australia: Australian National Committee on Large Dams.
Der Kiureghian, A., and O. Ditlevsen. 2007. “Aleatory or epistemic? Does it matter?” Struct. Saf. 31 (2): 105–112. https://doi.org/10.1016/j.strusafe.2008.06.020.
Dicelis, G., M. Assumpção, J. Kellogg, P. Pedraza, and F. Dias. 2016. “Estimating the 2008 Quetame (Colombia) earthquake source parameters from seismic data and InSAR measurements.” J. South Am. Earth Sci. 72 (Dec): 250–265. https://doi.org/10.1016/j.jsames.2016.09.011.
Douglas, J. 2021. “Ground motion prediction equations 1964-2021, database, 2021.” Accessed January 1, 2022. http://www.gmpe.org.uk/gmpereport2014.html.
Ebel, J. E., and A. L. Kafka. 1999. “A Monte Carlo approach to seismic hazard analysis.” Bull. Seismol. Soc. Am. 89 (4): 854–866. https://doi.org/10.1785/BSSA0890040854.
Escuder-Bueno, I., G. Mazzà, A. Morales-Torres, and J. T. Castillo-Rodríguez. 2016. “Computational aspects of dam risk analysis: Findings and challenges.” Engineering 2 (3): 319–324. https://doi.org/10.1016/J.ENG.2016.03.005.
Estay, N. P., G. Yáñez, S. Carretier, E. Lira, and J. Maringue. 2016. “Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: Study case San Ramón Fault, in southern Andes.” Nat. Hazards Earth Syst. Sci. 16 (12): 2511–2528. https://doi.org/10.5194/nhess-16-2511-2016.
Esteva, L. 1969. “Seismicity prediction: A Bayesian approach.” In Vol. 1 of Proc., 4th World Conf. on Earthquake Engineering, 172–184. Santiago, Chile: Editorial Universitaria. https://www.iitk.ac.in/nicee/wcee/article/4_vol1_A1-172.pdf.
Faccioli, E., and R. Paolucci. 2005. Elementi di sismologia applicata all’ingegneria. Bologna, Italy: Pitagora Editrice.
FEMA. 2005. Federal guidelines for dam safety, earthquake analyses and design dams. Washington, DC: FEMA.
Feng, C., and H. P. Hong. 2021. “Projecting sets of ground-motion models and their use to evaluate seismic hazard and uniform hazard spectrum for mainland China.” Nat. Hazard. Rev. 22 (3): 04021014. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000451.
Feng, C., T. J. Liu, and H. P. Hong. 2020. “Seismic hazard assessment for mainland China based on spatially smoothed seismicity.” J. Seismolog. 24 (3): 613–633. https://doi.org/10.1007/s10950-020-09918-3.
Fergany, E., and L. Hutchings. 2017. “Demonstration of pb-PSHA with Ras-Elhekma earthquake, Egypt.” NRIAG J. Astron. Geophys. 6 (1): 41–51. https://doi.org/10.1016/j.nrjag.2017.03.002.
Fiorentino, G., A. Forte, E. Pagano, F. Sabetta, C. Baggio, D. Lavorato, C. Nuti, and S. Santini. 2018. “Damage patterns in the town of Amatrice after August 24th 2016 central Italy earthquakes.” Bull. Earthquake Eng. 16 (3): 1399–1423. https://doi.org/10.1007/s10518-017-0254-z.
García-Fernández, M., M. J. Jiménez, and A. Kijko. 1989. “Seismic hazard parameters estimation in Spain from historical and instrumental catalogues.” Tectonophysics 167 (2–4): 245–251. https://doi.org/10.1016/0040-1951(89)90075-9.
García-Mayordomo, J., and J. M. Insua-Arévalo. 2011. “Seismic hazard assessment for the Itoiz dam site (western Pyrenees, Spain).” Soil Dyn. Earthquake Eng. 31 (7): 1051–1063. https://doi.org/10.1016/j.soildyn.2011.03.011.
Gaspar-Escribano, J. M., and B. Benito. 2008. “Overview of recent seismic risk analyses in Spain.” In Proc., 14th World Conf. on Earthquake Engineering. Novosibirsk, Russia: Institute of Theoretical and Applied Mechanics.
Gaspar-Escribano, J. M., M. Navarro, B. Benito, A. García-Jerez, and F. Vidal. 2010. “From regional-to local-scale seismic hazard assessment: Examples from southern Spain.” Bull. Earthquake Eng. 8 (6): 1547–1567. https://doi.org/10.1007/s10518-010-9191-9.
Gaspar-Escribano, J. M., A. Rivas-Medina, H. Parra, L. Cabañas, B. Benito, S. R. Barajas, and J. M. Solares. 2015. “Uncertainty assessment for the seismic hazard map of Spain.” Eng. Geol. 199 (Dec): 62–73. https://doi.org/10.1016/j.enggeo.2015.10.001.
GEM (Global Earthquake Model). 2020. “Database.” Accessed September 1, 2021. https://www.globalquakemodel.org/gem.
Government of Canada, Earthquakes Canada. 2022. “Database.” Accessed March 1, 2022. https://www.seismescanada.rncan.gc.ca/index-en.php.
Gülerce, Z., K. Buğra Soyman, B. Güner, and N. Kaymakci. 2017. “Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul.” Nat. Hazards Earth Syst. Sci. 17 (12): 2365–2381. https://doi.org/10.5194/nhess-17-2365-2017.
Gulia, L., and S. Wiemer. 2019. “Real-time discrimination of earthquake foreshocks and aftershocks.” Nature 574 (7777): 193–199. https://doi.org/10.1038/s41586-019-1606-4.
Gutenberg, B., and C. F. Richter. 1944. “Frequency of earthquakes in California.” Bull. Seismol. Soc. Am. 34 (4): 185–188. https://doi.org/10.1785/BSSA0340040185.
Hariri-Ardebili, M. A., and V. E. Saouma. 2017. “Single and multi-hazard capacity functions for concrete dams.” Soil Dyn. Earthquake Eng. 101 (Oct): 234–249. https://doi.org/10.1016/j.soildyn.2017.07.009.
Hutchings, L., G. N. Stavrakakis, E. Ioannidou, F. T. Wu, S. Jarpe, and P. Kasameyer. 1997. “Strong ground motion synthesis for a M=7.2 earthquake in the Gulf of Corinth, Greece using empirical Green’s functions.” In Proc., 29th IASPEI General Assembly. Washington, DC: USDOE.
ICOLD (International Commission on Large Dams). 2016. Selecting Seismic Parameters for Large Dams. Paris: ICOLD.
IGME (Instituto Geológico y Minero de España). 2015. Zesis: Base de Datos de Zonas Sismogénicas de la Península Ibérica y territorios de influencia para el cálculo de la peligrosidad sísmica en España. Madrid, Spain: Geological and Mining Institute of Spain.
IGM (National Geographic Institute). 2022. “Spanish database.” Accessed September 1, 2021. https://www.ign.es/web/ign/portal/sis-area-sismicidad.
Javdanian, H., H. R. Zarif Sanayei, and L. Shakarami. 2020. “A regression-based approach to the prediction of crest settlement of embankment dams under earthquake shaking.” Sci. Iran. 27 (2): 671–681. https://doi.org/10.24200/SCI.2018.50483.1716.
Kadkhodayan, V., S. M. Aghajanzadeh, and H. Mirzabozorg. 2015. “Seismic assessment of arch dams using fragility curves.” Civ. Eng. J. 1 (2): 14–20. https://doi.org/10.28991/cej-2015-00000006.
Kijko, A., and A. Smit. 2012. “Extension of the Aki-Utsu b-value estimator for incomplete catalogs.” Bull. Seismol. Soc. Am. 102 (3): 1283–1287. https://doi.org/10.1785/0120110226.
Kramer, S. L. 1996. Geotechnical earthquake engineering. Upper Saddle River, NJ: Prentice-Hall.
Li, X., L. Wang, and S. Liu. 2016. “Geographical analysis of community resilience to seismic hazard in Southwest China.” Int. J. Disaster Risk Sci. 7 (3): 257–276. https://doi.org/10.1007/s13753-016-0091-8.
Luzi, L., R. Puglia, E. Russo, and ORFEUS WG5. 2016. “Engineering strong motion (ESM) database, version 1.0.” Accessed January 1, 2022. https://esm.mi.ingv.it.
Martín Martín, A. J. 1989. “Probabilistic seismic hazard analysis and damage assessment in Andalusia (Spain).” Tectonophysics 167 (2–4): 235–244. https://doi.org/10.1016/0040-1951(89)90074-7.
McGuire, R. K. 2008. “Probabilistic seismic hazard analysis: Early history.” Earthquake Eng. Struct. Dyn. 37 (3): 329–338. https://doi.org/10.1002/eqe.765.
Mert, A., Y. M. Fahjan, L. J. Hutchings, and A. Pınar. 2016. “Physically based probabilistic seismic hazard analysis using broadband ground motion simulation: A case study for the Prince Islands Fault, Marmara Sea.” Earth Planets Space 68 (1): 1–26. https://doi.org/10.1186/s40623-016-0520-3.
MOPTMA (Ministerio de Obras Publicas, Transporte y Medioambiente). 1996. Reglamento Tecnico sobre Seguridad de Presas y Embalses. Madrid, Spain: Boletın Oficial del Estado.
Morales, J., S. K. Singh, and M. Ordaz. 1996. “Analysis of the Granada (Spain) earthquake of 24 June, 1984 (M= 5) with emphasis on seismic hazard in the Granada Basin.” Tectonophysics 257 (2–4): 253–263. https://doi.org/10.1016/0040-1951(95)00188-3.
Morales-Esteban, A., J. L. de Justo, F. Martínez-Álvarez, and J. M. Azañón. 2012. “Probabilistic method to select calculation accelerograms based on uniform seismic hazard acceleration response spectra.” Soil Dyn. Earthquake Eng. 43 (Dec): 174–185. https://doi.org/10.1016/j.soildyn.2012.07.003.
Mulargia, F., P. B. Stark, and R. J. Geller. 2017. “Why is probabilistic seismic hazard analysis (PSHA) still used?” Phys. Earth Planet. Inter. 264 (Mar): 63–75. https://doi.org/10.1016/j.pepi.2016.12.002.
NGA (Next Generation Attenuation). 2022. “West 2, project.” Accessed January 1, 2022. https://ngawest2.berkeley.edu/.
Ojeda, A., K. Atakan, E. Masana, P. Santanach, M. J. Jiménez, and M. García-Fernández. 2002. “Integration and influence of paleoseismic and geologic data for the seismic hazard evaluation in the Catalan coastal ranges, Spain.” Soil Dyn. Earthquake Eng. 22 (9–12): 911–916. https://doi.org/10.1016/S0267-7261(02)00114-8.
Ordaz, M., A. Aguilar, and J. Arboleda. 2007. Crisis (Version 5.4). Coyoacán, Mexico: National Autonomous Univ. of Mexico.
Pailoplee, S., and P. Charusiri. 2016. “Seismic hazards in Thailand: A compilation and updated probabilistic analysis.” Earth Planets Space 68 (1): 1–14. https://doi.org/10.1186/s40623-016-0465-6.
Poljansek, K., M. Marin Ferrer, T. De Groeve, and I. Clark. 2017. Science for disaster risk management 2017: Knowing better and losing less. Luxembourg: Disaster Risk Management Knowledge Centre, European Union.
Qadri, S. M., and O. A. Malik. 2021. “Establishing site response-based micro-zonation by applying machine learning techniques on ambient noise data: A case study from northern Potwar Region, Pakistan.” Environ. Earth Sci. 80 (2): 1–15. https://doi.org/10.1007/s12665-020-09322-7.
Reicherter, K. R., A. Jabaloy, J. Galindo-Zaldívar, P. Ruano, P. Becker-Heidmann, J. Morales, S. Reiss, and F. González-Lodeiro. 2003. “Repeated palaeoseismic activity of the Ventas de Zafarraya fault (S Spain) and its relation with the 1884 Andalusian earthquake.” Int. J. Earth Sci. 92 (6): 912–922. https://doi.org/10.1007/s00531-003-0366-3.
Romeo, R. W. 2007. “Le azioni sismiche e le categorie di sottosuolo.” Giornale di Geologia Applicata 6: 65–80.
Rong, Y., X. Xu, J. Cheng, G. Chen, H. Magistrale, and Z. K. Shen. 2020. “A probabilistic seismic hazard model for Mainland China.” Earthquake Spectra 36 (1_suppl): 181–209. https://doi.org/10.1177/8755293020910754.
Sabetta, F., A. Lucantoni, H. Bungum, and J. J. Bommer. 2005. “Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights.” Soil Dyn. Earthquake Eng. 25 (4): 317–329. https://doi.org/10.1016/j.soildyn.2005.02.002.
Sabetta, F., and A. Pugliese. 1996. “Estimation of response spectra and simulation of nonstationary earthquake ground motions.” Bull. Seismol. Soc. Am. 86 (2): 337–352. https://doi.org/10.1785/BSSA0860020337.
Sabetta, F., A. Pugliese, G. Fiorentino, G. Lanzano, and L. Luzi. 2021. “Simulation of non-stationary stochastic ground motions based on recent Italian earthquakes.” Bull. Earthquake Eng. 19 (9): 3287–3315. https://doi.org/10.1007/s10518-021-01077-1.
Sanz de Galdeano, C., J. A. Peláez Montilla, and C. López Casado. 2003. “Seismic potential of the main active faults in the Granada Basin (southern Spain).” Pure Appl. Geophys. 160 (8): 1537–1556. https://doi.org/10.1007/s00024-003-2359-3.
Scordilis, E. M. 2006. “Empirical global relations converting MS and MB to moment magnitude.” J. Seismolog. 10 (2): 225–236. https://doi.org/10.1007/s10950-006-9012-4.
SEPREM (Spanish Association of Dams and Reservoirs). 2018. “Spanish association of dams and reservoirs.” Accessed September 1, 2021. http://www.seprem.es/index.php.
Sitharam, T. G., S. Kolathayar, and N. James. 2015. “Probabilistic assessment of surface level seismic hazard in India using topographic gradient as a proxy for site condition.” Geosci. Front. 6 (6): 847–859. https://doi.org/10.1016/j.gsf.2014.06.002.
SNCZI (National Flood Zone Mapping System). 2018. “Inventario de Presas y Embalses.” Accessed September 1, 2021. https://sig.mapama.gob.es/snczi/.
Sørensen, M. B., N. Pulido, and K. Atakan. 2007. “Sensitivity of ground-motion simulations to earthquake source parameters: A case study for Istanbul, Turkey.” Bull. Seismol. Soc. Am. 97 (3): 881–900. https://doi.org/10.1785/0120060044.
Sotoudeh, M. A., M. Ghaemian, and A. S. Moghadam. 2019. “Determination of limit-states for near-fault seismic fragility assessment of concrete gravity dams.” Sci. Iran. 26 (3): 1135–1155. https://doi.org/ 10.24200/SCI.2018.20701.
Ullah, S., D. Bindi, M. Pilz, L. Danciu, G. Weatherill, E. Zuccolo, A. Ischuk, N. N. Mikhailova, K. Abdrakhmatov, and S. Parolai. 2015a. “Probabilistic seismic hazard assessment for Central Asia.” Ann. Geophys. 58 (1): 1–21. https://doi.org/10.4401/ag-6687.
Ullah, S., D. Bindi, M. Pilz, and S. Parolai. 2015b. “Probabilistic seismic hazard assessment of Bishkek, Kyrgyzstan, considering empirically estimated site effects.” Ann. Geophys. 58 (1): 1–13. https://doi.org/10.4401/ag-6682.
USACE. 1994. Arch dam design, manual no. 1110-2-2201. Washington, DC: USACE.
USGS. 2022. “Science for a changing world, seismic hazard maps and site-specific data.” Accessed March 1, 2022. https://www.usgs.gov/programs/earthquake-hazards.
Wang, Y. J., C. H. Chan, Y. T. Lee, K. F. Ma, J. B. H. Shyu, R. J. Rau, and C. T. Cheng. 2016. “Probabilistic seismic hazard assessment for Taiwan.” Terr. Atom. Ocean Sci. 27 (3): 325–340. https://doi.org/10.3319/TAO.2016.05.03.01(TEM).
Woessner, J., and S. Wiemer. 2005. “Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty.” Bull. Seismol. Soc. Am. 95 (2): 684–698. https://doi.org/10.1785/0120040007.
Yazdani, A., and M. Kowsari. 2013. “Bayesian estimation of seismic hazards in Iran.” Sci. Iran. 20 (3): 422–430. https://doi.org/10.1016/j.scient.2012.12.032.
Yee, E. 2017. “Use of the t-distribution to construct seismic hazard curves for seismic probabilistic safety assessments.” Nuclear Eng. Technol. 49 (2): 373–379. https://doi.org/10.1016/j.net.2016.12.014.
Zacchei, E., and J. L. Molina. 2020. “Reviewing arch-dams’ building risk reduction through a sustainability–safety management approach.” Sustainability 12 (1): 392. https://doi.org/10.3390/su12010392.
Zacchei, E., and J. L. Molina. 2021. “Introducing importance factors (IFs) to estimate a dam’s risk of collapse produced by seismic processes.” Int. J. Disaster Risk Reduct. 60 (Jun): 102311. https://doi.org/10.1016/j.ijdrr.2021.102311.
Zacchei, E., J. L. Molina, and R. M. Brasil. 2019a. “Nonlinear degradation analysis of arch-dam blocks by using deterministic and probabilistic seismic input.” J. Vib. Eng. Technol. 7 (3): 301–309. https://doi.org/10.1007/s42417-019-00112-5.
Zacchei, E., J. L. Molina, and R. M. L. Rebello da Fonseca Brasil. 2019b. “Seismic hazard assessment of arch dams via dynamic modelling: An application to the Rules Dam in Granada, SE Spain.” Int. J. Civ. Eng. 17 (3): 323–332. https://doi.org/10.1007/s40999-017-0278-4.
Zhan, Z. 2017. “Gutenberg–Richter law for deep earthquakes revisited: A dual-mechanism hypothesis.” Earth Planet. Sci. Lett. 461 (Mar): 1–7. https://doi.org/10.1016/j.epsl.2016.12.030.
Information & Authors
Information
Published In
Copyright
© 2022 American Society of Civil Engineers.
History
Received: Sep 27, 2021
Accepted: Mar 17, 2022
Published online: Jul 1, 2022
Published in print: Sep 1, 2022
Discussion open until: Dec 1, 2022
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.