Comparison between Distance Functions for Approximate Bayesian Computation to Perform Stochastic Model Updating and Model Validation under Limited Data
Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 10, Issue 2
Abstract
The paper reviews the distance functions that have been or could be used to perform stochastic model updating via approximate Bayesian computation, namely: (1) Euclidean distance; (2) Bhattacharyya distance; (3) Bray–Curtis distance; and (4) 1-Wasserstein distance functions. For each of these distance functions, details on their mathematical formalism and implementation are provided along with an evaluation of their respective advantages and disadvantages illustrated though a numerical study. Subsequently, to provide a basis for comparison in the stochastic model updating performance by the respective distance functions, two case studies in the form of model validation problems are presented. The first problem is based on the 2014 NASA-LaRC Multidisciplinary Uncertainty Quantification Challenge. The second problem is based on the 2008 thermal problem presented by Sandia National Laboratories. Both problems provide a relatively complex and realistic setting to assess the strengths and robustness of each distance function in performing approximate Bayesian computation under polymorphic uncertainty and limited data for a one-dimensional output space. The comparison will be done based on the following: (1) the precision of the inference results on the inferred parameters; and (2) the precision of the corresponding stochastic model output against a set of validation data.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
The authors confirm and declare that the data and the codes that support the findings in the paper are made openly accessible on GitHub (Lye, n.d.).
References
Abdessalem, A. B., N. Dervilis, D. Wagg, and K. Worden. 2019. “Model selection and parameter estimation of dynamical systems using a novel variant of approximate Bayesian computation.” Mech. Syst. Signal Process. 122 (May): 364–386. https://doi.org/10.1016/j.ymssp.2018.12.048.
Beaumont, M. A., W. Zhang, and D. J. Balding. 2002. “Approximate Bayesian computation in population genetics.” Genetics 162 (4): 2025–2035. https://doi.org/10.1093/genetics/162.4.2025.
Beck, J. L., and L. S. Katafygiotis. 1998. “Updating models and their uncertainties. I: Bayesian statistical framework.” J. Eng. Mech. 124 (4): 455–461. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455).
Beer, M. 2009. “Fuzzy probability theory.” Encycl. Complexity Syst. Sci. 1 (1): 4047–4059. https://doi.org/10.1007/978-0-387-30440-3_237.
Beer, M., S. Ferson, and V. Kreinovich. 2013. “Imprecise probabilities in engineering analyses.” Mech. Syst. Signal Process. 37 (1–2): 4–29. https://doi.org/10.1016/j.ymssp.2013.01.024.
Bernton, E., P. E. Jacob, M. Gerber, and C. P. Robert. 2019. “Approximate Bayesian computation with the Wasserstein distance.” J. R. Stat. Soc. B 81 (2): 235–269. https://doi.org/10.1111/rssb.12312.
Betz, W., I. Papaioannou, and D. Straub. 2016. “Transitional Markov Chain Monte Carlo: Observations and improvements.” J. Eng. Mech. 142 (5): 04016016. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001066.
Bhattacharyya, A. 1943. “On a measure of divergence between two statistical populations defined by their probability distributions.” Bull. Calcutta Math. Soc. 35 (Jun): 99–109.
Bhattacharyya, A. 1946. “On a measure of divergence between two multinomial populations.” Sankhya: Indian J. Stat. 7 (4): 401–406.
Bi, S., M. Beer, S. Cogan, and J. E. Mottershead. 2023. “Stochastic model updating with uncertainty quantification: An overview and tutorial.” Mech. Syst. Signal Process. 204 (Jun): 110784. https://doi.org/10.1016/j.ymssp.2023.110784.
Bi, S., M. Broggi, and M. Beer. 2019. “The role of the Bhattacharyya distance in stochastic model updating.” Mech. Syst. Signal Process. 117 (Feb): 437–452. https://doi.org/10.1016/j.ymssp.2018.08.017.
Bi, S., K. He, Y. Zhao, D. Moens, M. Beer, and J. Zhang. 2022. “Towards the NASA UQ challenge 2019: Systematically forward and inverse approaches for uncertainty propagation and quantification.” Mech. Syst. Signal Process. 165 (Feb): 108387. https://doi.org/10.1016/j.ymssp.2021.108387.
Bi, S., S. Prabhu, S. Cogan, and S. Atamturktur. 2017. “Uncertainty quantification metrics with varying statistical information in model calibration and validation.” AIAA J. 55 (10): 3570–3583. https://doi.org/10.2514/1.J055733.
Bray, J. R., and J. T. Curtis. 1957. “An ordination of the upland forest communities of Southern Wisconsin.” Ecol. Monogr. 27 (4): 325–349. https://doi.org/10.2307/1942268.
Bukatin, M., R. Kopperman, S. Matthews, and H. Pajoohesh. 2017. “Partial metric spaces.” Am. Math. Mon. 116 (8): 708–718. https://doi.org/10.4169/193009709X460831.
Ching, J. Y., and Y. C. Chen. 2007. “Transitional Markov Chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging.” J. Eng. Mech. 133 (7): 816–832. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(816).
Chrzaszcz, K., J. Jachymski, and F. Turobos. 2018. “On characterizations and topology of regular semimetric spaces.” Publ. Math. Debrecen 93 (1–2): 87–105. https://doi.org/10.5486/PMD.2018.8049.
Crespo, L. G., S. P. Kenny, and D. P. Giesy. 2014. “The NASA Langley multidisciplinary uncertainty quantification challenge.” In Proc., 16th AIAA Non-Deterministic Approaches Conf., 1. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2014-1347.
de Angelis, M., and A. Gray. 2021. “Why the 1-Wasserstein distance is the area between the two marginal CDFs.” Preprint, submitted November 5, 2011. https://doi.org/10.48550/arXiv.2111.03570.
de Carlo, E. C., B. P. Smarslok, and S. Mahadevan. 2016. “Segmented Bayesian calibration of multidisciplinary models.” J. Aerosp. Inf. Syst. 54 (12): 3727–3741. https://doi.org/10.2514/1.J054960.
Dowding, K. J., M. Pilch, and R. G. Hills. 2008. “Formulation of the thermal problem.” Comput. Methods Appl. Mech. Eng. 197 (29–32): 2385–2389. https://doi.org/10.1016/j.cma.2007.09.029.
Drieschner, M., Y. Petryna, S. Freitag, P. Edler, A. Schmidt, and T. Lahmer. 2021. “Decision making and design in structural engineering problems under polymorphic uncertainty.” Eng. Struct. 231 (1): 111649. https://doi.org/10.1016/j.engstruct.2020.111649.
Dubois, D., L. Foulloy, G. Mauris, and H. M. Prade. 2004. “Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities.” Reliab. Comput. 10 (4): 273–297. https://doi.org/10.1023/B:REOM.0000032115.22510.b5.
Dubois, D., and H. M. Prade. 1988. Possibility theory an approach to computerized processing of uncertainty. Berlin: Springer.
Earle, C. J., L. A. Harris, J. H. Hubbard, and S. Mitra. 2003. “Schwarz’s lemma and the Kobayashi and Carathéodory pseudometrics on complex Banach manifolds.” Kleinian Groups Hyperbolic 3-Manifolds 219 (Feb): 363–384. https://doi.org/10.1017/CBO9780511542817.017.
Fang, S., S. Chen, Y. Lin, and Z. Dong. 2019. “Probabilistic damage identification incorporating approximate Bayesian computation with stochastic response surface.” Mech. Syst. Signal Process. 128 (Aug): 229–243. https://doi.org/10.1016/j.ymssp.2019.03.044.
Ferson, S., V. Kreinovick, L. Ginzburg, D. S. Myers, and K. Sentz. 2003. Constructing probability boxes and Dempster-Shafer structures. Livermore, CA: Sandia National Lab.
Ferson, S., W. Oberkampf, and L. Ginzburg. 2008. “Model validation and predictive capability for the thermal challenge problem.” Comput. Methods Appl. Mech. Eng. 197 (29–32): 2408–2430. https://doi.org/10.1016/j.cma.2007.07.030.
Frechét, M. M. 1906. “Sur quelques points du calcul fonctionnel.” Rend. Del Circ. Mat. Di Palermo 22 (1): 1–725. https://doi.org/10.1007/BF03018603.
Gelfand, A. E., and A. F. M. Smith. 1990. “Sampling-based approaches to calculating marginal densities.” J. Am. Stat. Assoc. 85 (Jun): 398–409. https://doi.org/10.1080/01621459.1990.10476213.
Gilks, W. R., and P. Wild. 1992. “Adaptive rejection sampling for Gibbs sampling.” Appl. Stat. 41 (2): 337–348. https://doi.org/10.2307/2347565.
Goodman, J., and J. Weare. 2010. “Ensemble samplers with affine invariance.” Commun. Appl. Math. Comput. Sci. 5 (5): 65–80. https://doi.org/10.2140/camcos.2010.5.65.
Gotz, M., W. Graf, and M. Kaliske. 2015. “Structural design with polymorphic uncertainty models.” Int. J. Reliab. Saf. 9 (2–3): 112–131. https://doi.org/10.1504/IJRS.2015.072715.
Graf, W., M. Gotz, and M. Kaliske. 2015. “Analysis of dynamical processes under consideration of polymorphic uncertainty.” Struct. Saf. 52 (1): 194–201. https://doi.org/10.1016/j.strusafe.2014.09.003.
Gray, A., A. Wimbush, M. de Angelis, P. O. Hristov, D. Calleja, E. Miralles-Dolz, and R. Rocchetta. 2022. “From inference to design: A comprehensive framework for uncertainty quantification in engineering with limited information.” Mech. Syst. Signal Process. 165 (Feb): 108210. https://doi.org/10.1016/j.ymssp.2021.108210.
Hastings, W. K. 1970. “Monte Carlo sampling methods using Markov Chains and their applications.” Biometrika 57 (1): 97–109. https://doi.org/10.1093/biomet/57.1.97.
Hazra, I., M. D. Pandey, and M. I. Jyrkama. 2020a. “Estimation of flow-accelerated corrosion rate in nuclear piping system.” J. Nucl. Eng. Radiat. Sci. 6 (1): 011106. https://doi.org/10.1115/1.4044407.
Hazra, I., M. D. Pandey, and N. Manzana. 2020b. “Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data.” Reliab. Eng. Syst. Saf. 198 (Jun): 106780. https://doi.org/10.1016/j.ress.2019.106780.
He, L., Y. Liu, S. Bi, L. Wang, M. Broggi, and M. Beer. 2019. “Estimation of failure probability in braced excavation using Bayesian networks with integrated model updating.” Underground Space 5 (4): 315–323. https://doi.org/10.1016/j.undsp.2019.07.001.
Helton, J. C. 1997. “Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty.” J. Stat. Comput. Simul. 57 (1–4): 3–76. https://doi.org/10.1080/00949659708811803.
Helton, J. C., J. D. Johnson, and W. L. Oberkampf. 2004. “An exploration of alternative approaches to the representation of uncertainty in model predictions.” Reliab. Eng. Syst. Saf. 85 (Aug): 39–71. https://doi.org/10.1016/j.ress.2004.03.025.
Hills, R. G., M. Pilch, K. J. Dowding, J. Red-Horse, T. L. Paez, I. Babuška, and R. Tempone. 2008. “Validation challenge workshop.” Comput. Methods Appl. Mech. Eng. 197 (29–32): 2375–2380. https://doi.org/10.1016/j.cma.2007.10.016.
Jachymski, J., and F. Turobos. 2020. “On functions preserving regular semimetrics and quasimetrics satisfying the relaxed polygonal inequality.” Rev. De La Real Acad. De Cienc. Exactas, Físicas y Nat. Ser. A. Mat. 114 (3). https://doi.org/10.1007/s13398-020-00891-7.
Kantorovich, L. V. 1939. “Mathematical methods of organizing and planning production.” Manage. Sci. 6 (4): 366–422. https://doi.org/10.1287/mnsc.6.4.366.
Katafygiotis, L. S., and J. L. Beck. 1998. “Updating models and their uncertainties. II: Model identifiability.” J. Eng. Mech. 124 (4): 463–467. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463).
Khodaparast, H. H., and J. E. Mottershead. 2008. “Efficient methods in stochastic model updating.” Stochastic Model 7 (8)|: 9.
Kitahara, M., S. Bi, M. Broggi, and M. Beer. 2021. “Bayesian model updating in time domain with metamodel-based reliability method.” J. Risk Uncertainty Eng. Syst. Part A: Civ. Eng. 7 (3): 04021030. https://doi.org/10.1061/AJRUA6.0001149.
Kitahara, M., S. Bi, M. Broggi, and M. Beer. 2022a. “Distribution-free stochastic model updating of dynamic systems with parameter dependencies.” Struct. Saf. 97 (Jul): 102227. https://doi.org/10.1016/j.strusafe.2022.102227.
Kitahara, M., S. Bi, M. Broggi, and M. Beer. 2022b. “Nonparametric Bayesian stochastic model updating with hybrid uncertainties.” Mech. Syst. Signal Process. 163 (Jan): 108195. https://doi.org/10.1016/j.ymssp.2021.108195.
Kobayashi, S. 1976. “Intrinsic distances, measures and geometric function theory.” Bull. Am. Math. Soc. 82 (3): 357–416. https://doi.org/10.1090/S0002-9904-1976-14018-9.
Kobayashi, S. 1984. “Projectively invariant distances for affine and projective structures.” Banach Center Publ. 12 (1): 127–152. https://doi.org/10.4064/-12-1-127-152.
Kullback, S. 1997. Information theory and statistics. North Chelmsford, MA: Courier.
Kullback, S., and R. A. Leibler. 1951. “On information and sufficiency.” Ann. Math. Stat. 22 (1): 79–86. https://doi.org/10.1214/aoms/1177729694.
Lintusaari, J., M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. 2017. “Fundamentals and recent developments in approximate Bayesian computation.” Syst. Biol. 66 (Jun): 66–82. https://doi.org/10.1093/sysbio/syw077.
Lye, A. n.d. “Distance metrics and approximate Bayesian computation tutorial.” Accessed August 31, 2023. https://github.com/Adolphus8/Approximate_Bayesian_Computation.git.
Lye, A. 2023. “Robust and efficient probabilistic approaches towards parameter identification and model updating.” Ph.D. thesis, Institute for Risk and Uncertainty, Univ. of Liverpool, School of Engineering.
Lye, A., A. Cicirello, and E. Patelli. 2021. “Sampling methods for solving Bayesian model updating problems: A tutorial.” Mech. Syst. Signal Process. 159 (Oct): 107760. https://doi.org/10.1016/j.ymssp.2021.107760.
Lye, A., A. Cicirello, and E. Patelli. 2022a. “An efficient and robust sampler for Bayesian inference: Transitional ensemble Markov Chain Monte Carlo.” Mech. Syst. Signal Process. 167 (Mar): 108471. https://doi.org/10.1016/j.ymssp.2021.108471.
Lye, A., A. Cicirello, and E. Patelli. 2022b. “On-line Bayesian model updating and model selection of a piece-wise model for the creep-growth rate prediction of a nuclear component.” In Proc., 8th Int. Symp. on Reliability Engineering and Risk Management, 67–74. Singapore: World Publishing.
Lye, A., A. Cicirello, and E. Patelli. 2023a. “On-line Bayesian inference for structural health monitoring under model uncertainty using sequential ensemble Monte Carlo.” In Proc., 13th Int. Conf. on Structural Safety and Reliability. Shanghai, China: Shanghai Scientific and Technical Publishers.
Lye, A., A. Gray, M. de Angelis, and S. Ferson. 2023b. “Robust probability bounds analysis for failure analysis under lack of data and model uncertainty.” In Proc., 5th ECCOMAS Thematic Conf. on Uncertainty Quantification in Computational Sciences and Engineering. Oslo, Norway: ECCOMAS Proceedia. https://doi.org/10.7712/120223.10345.19797.
Lye, A., M. Kitahara, M. Broggi, and E. Patelli. 2022c. “Robust optimization of a dynamic Black-box system under severe uncertainty: A distribution-free framework.” Mech. Syst. Signal Process. 167 (Mar): 108522. https://doi.org/10.1016/j.ymssp.2021.108522.
Lye, A., L. Marino, A. Cicirello, and E. Patelli. 2023c. “Sequential ensemble Monte Carlo sampler for on-line bayesian inference of time-varying parameter in engineering applications.” J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng. 9 (3): 031202. https://doi.org/10.1115/1.4056934.
Marin, J. M., P. Pudlo, C. P. Robert, and R. J. Ryder. 2012. “Approximate Bayesian computational methods.” Stat. Comput. 22 (6): 1167–1180. https://doi.org/10.1007/s11222-011-9288-2.
Mottershead, J. E., and M. I. Friswell. 1993. “Model updating in structural dynamics: A survey.” J. Sound Vib. 167 (Jun): 347–375. https://doi.org/10.1006/jsvi.1993.1340.
Mottershead, J. E., M. Link, M. I. Friswell, and C. Schedlinski. 2021. “Model updating.” In Handbook of experimental structural dynamics, 1–53. New York: Springer. https://doi.org/10.1007/978-1-4939-6503-8_18-2.
Nadjahi, K., V. de Bortoli, A. Durmus, R. Badeau, and U. Simsekli. 2020. “Approximate Bayesian Computation with the sliced-wasserstein distance.” In Proc., IEEE Int. Conf. on Acoustics, Speech and Signal Processing. New York: IEEE.
Oberkampf, W. L., J. C. Helton, C. A. Joslyn, S. F. Wojtkiewicz, and S. Ferson. 2004. “Challenge problems: Uncertainty in system response given uncertain parameters.” Reliab. Eng. Syst. Saf. 85 (Apr): 11–19. https://doi.org/10.1016/j.ress.2004.03.002.
Panaretos, V. M., and Y. Zemel. 2019. “Statistical aspects of Wasserstein distances.” Ann. Rev. Stat. Appl. 6 (Mar): 405–431. https://doi.org/10.1146/annurev-statistics-030718-104938.
Park, I., and R. V. Grandhi. 2012. “Quantifying multiple types of uncertainty in physics-based simulation using Bayesian model averaging.” J. Aerosp. Inf. Syst. 49 (5): 1038–1045. https://doi.org/10.2514/1.J050741.
Patelli, E., D. A. Alvarez, M. Broggi, and M. de Angelis. 2015. “Uncertainty management in multidisciplinary design of critical safety systems.” J. Aerosp. Inf. Syst. 12 (1): 140–169. https://doi.org/10.2514/1.I010273.
Patelli, E., Y. Govers, M. Broggi, H. M. Gomes, M. Link, and J. E. Mottershead. 2017. “Sensitivity or Bayesian model updating: A comparison of techniques using the DLR-AIRMOD test data.” Arch. Appl. Mech. 87 (May): 905–925. https://doi.org/10.1007/s00419-017-1233-1.
Ricotta, C., and J. Podani. 2017. “On some properties of the Bray-Curtis dissimilarity and their ecological meaning.” Ecol. Complexity 31 (Sep): 201–205. https://doi.org/10.1016/j.ecocom.2017.07.003.
Rocchetta, R., M. Broggi, Q. Huchet, and E. Patelli. 2018a. “On-line Bayesian model updating for structural health monitoring.” Mech. Syst. Signal Process. 103 (Mar): 174–195. https://doi.org/10.1016/j.ymssp.2017.10.015.
Rocchetta, R., M. Broggi, and E. Patelli. 2018b. “Do we have enough data? Robust reliability via uncertainty quantification.” Appl. Math. Modell. 54 (Feb): 710–721. https://doi.org/10.1016/j.apm.2017.10.020.
Rockafellar, R. T., and R. J. B. Wets. 2010. Variational analysis. Berlin: Springer.
Roy, C. J., and W. L. Oberkampf. 2011. “A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing.” Comput. Methods Appl. Mech. Eng. 200 (Jun): 2131–2144. https://doi.org/10.1016/j.cma.2011.03.016.
Safta, C., K. Sargsyan, H. N. Najm, K. Chowdhary, B. Debusschere, L. P. Swiler, and M. S. Eldred. 2015. “Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem.” J. Aerosp. Inf. Syst. 12 (1): 219–234. https://doi.org/10.2514/1.I010256.
Sheather, S. J., and M. C. Jones. 1991. “A reliable data-based bandwidth selection method for kernel density estimation.” J. R. Stat. Soc. B 53 (Jul): 683–690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x.
Simoen, E., G. de Roeck, and G. Lombaert. 2015. “Dealing with uncertainty in model updating for damage assessment: A review.” Mech. Syst. Signal Process. 56-57 (May): 123–149. https://doi.org/10.1016/j.ymssp.2014.11.001.
Smith, K. 2013. Precalculus: A functional approach to graphing and problem solving. Burlington, MA: Jones and Bartlett.
Smyth, M. B. 1988. “Quasi-uniformities: Reconciling domains with metric spaces.” Math. Found. Program. Lang. Semant. 1 (Jun): 236–253. https://doi.org/10.1007/3-540-19020-1_12.
Steen, L. A., and J. A. Seebach. 1978. Counterexamples in topology. New York: Springer.
Sun, L., L. Zhu, W. Li, C. Zhang, and T. Balezentis. 2022. “Interval-valued functional clustering based on the Wasserstein distance with application to stock data.” Inf. Sci. 606 (Aug): 910–926. https://doi.org/10.1016/j.ins.2022.05.112.
Turner, B. M., and T. V. Zandt. 2012. “A tutorial on approximate Bayesian computation.” J. Math. Psychol. 56 (2): 69–85. https://doi.org/10.1016/j.jmp.2012.02.005.
Vaserstein, L. N. 1969. “Markov processes over denumerable products of spaces, describing large systems of automata.” Probl. Inf. Transm. 5 (3): 64–72.
Vesentini, E. 1983. “Carathéodory distances and Banach algebras.” Adv. Math. 47 (1): 50–73. https://doi.org/10.1016/0001-8708(83)90054-3.
Wang, C., L. Yang, M. Xie, M. Valdebenito, and M. Beer. 2023. “Bayesian maximum entropy method for stochastic model updating using measurement data and statistical information.” Mech. Syst. Signal Process. 188 (Apr): 110012. https://doi.org/10.1016/j.ymssp.2022.110012.
Wilson, W. A. 1931. “On quasi-metric spaces.” Am. J. Math. 53 (3): 675–684. https://doi.org/10.2307/2371174.
Worden, K. 2001. Nonlinearity in structural dynamics: Detection, identification and modelling. London: CRC Press.
Yager, R., M. Fedrizzi, and J. Kacprzyk. 1994. Advances in the Dempster-Shafer theory of evidence. New York: Wiley.
Zadeh, L. A. 1965. “Fuzzy sets.” Inf. Control 8 (65): 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X.
Zeng, Y., H. Wang, S. Zhang, Y. Cai, and E. Li. 2019. “A novel adaptive approximate Bayesian computation method for inverse heat conduction problem.” Int. J. Heat Mass Transfer 134 (May): 185–197. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.002.
Zhao, W., L. Yang, C. Dang, R. Rocchetta, M. Valdebenito, and D. Moens. 2022a. “Enriching stochastic model updating metrics: An efficient Bayesian approach using Bray-Curtis distance and an adaptive binning algorithm.” Mech. Syst. Signal Process. 171 (May): 108889. https://doi.org/10.1016/j.ymssp.2022.108889.
Zhao, W., L. Yang, and P. Wang. 2022b. “Stochastic model calibration using the Bray-Curtis distance-based uncertainty quantification metric.” In Proc., 12th Int. Conf. on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 1315–1320. London: Institution of Engineering and Technology. https://doi.org/10.1049/icp.2022.3050.
Zhu, C., W. Tian, B. Yin, Z. Li, and J. Shi. 2020. “Uncertainty calibration of building energy models by combining approximate Bayesian computation and machine learning algorithms.” Appl. Energy 268 (Aug): 115025. https://doi.org/10.1016/j.apenergy.2020.115025.
Information & Authors
Information
Published In
Copyright
© 2024 American Society of Civil Engineers.
History
Published online: Mar 18, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 18, 2024
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Cited by
- Xiaowen Sun, Yongzhong Zhang, Chao Zhao, Tiantian Li, Song Bai, Design of a public health emergency equipment modularized system for bioterrorism events in major public places based on scenario analysis, literature review, cluster analysis, and Delphi consultation, Frontiers in Public Health, 10.3389/fpubh.2025.1513319, 13, (2025).
- Adolphus Lye, Wasin Vechgama, Mohamed Sallak, Sebastien Destercke, Scott Ferson, Sicong Xiao, Advances in the Reliability Analysis of Coherent Systems under Limited Data with Confidence Boxes, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 10.1061/AJRUA6.RUENG-1380, 11, 1, (2025).