State-of-the-Art Reviews
Aug 8, 2023

Fire Behavior of GFRP-Reinforced Concrete Structural Members: A State-of-the-Art Review

Publication: Journal of Composites for Construction
Volume 27, Issue 5

Abstract

The use of glass fiber–reinforced polymer (GFRP) bars in reinforced concrete (RC) structures has grown significantly in recent years, most notably in bridge deck applications, as they provide an innovative solution to address stringent durability requirements in severe environmental conditions. However, concerns regarding the degradation of mechanical properties of GFRP bars and their bond to concrete at elevated temperature, as well as a lack of fire design guidance, remain obstacles to their widespread use in buildings. This paper presents a review of the available literature regarding the fire performance of GFRP-RC structural members, as well as a summary of relevant research needs. First, it addresses the effects of elevated temperature on the thermal and mechanical properties of GFRP bars. Second, experimental and numerical studies of GFRP bars’ bond behavior at elevated temperature, and of the fire performance of GFRP-RC beams and slabs, are discussed. Finally, the available fire design guidance is discussed, and recommendations for future research are given.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to acknowledge the support of CERIS research center (FCT funding UIDB/04625/2020). The first author also wishes to thank the financial support of FCT through the scholarship SFRH/BD/129681/2017.

References

AASHTO. 2018. AASHTO LRFD bridge design guide specifications for GFRP – reinforced concrete bridge decks and traffic railings. Washington, DC: AASHTO.
Abbasi, A., and P. J. Hogg. 2005. “Temperature and environmental effects on glass fibre rebar: Modulus, strength and interfacial bond strength with concrete.” Composites, Part B 36 (5): 394–404. https://doi.org/10.1016/j.compositesb.2005.01.006.
Abbasi, A., and P. J. Hogg. 2006. “Fire testing of concrete beams with fibre reinforced plastic rebar.” Composites, Part A 37 (8): 1142–1150. https://doi.org/10.1016/j.compositesa.2005.05.029.
ACI (American Concrete Institute). 2008. Specification for carbon and glass fiber-reinforced polymer bar material for concrete reinforcement. ACI SPEC-440.6-08(17)(22) (Reapproved 2022). Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2015. Guide for the design and construction of structural concrete reinforced with FRP bars. ACI 440.1R-15. Farmington Hills, MI: ACI.
ACI (American Concrete Institute). 2022. Building code requirements for structural concrete reinforced with glass fiber-reinforced polymer (GFRP) bars. ACI CODE-440.11-22. Farmington Hills, MI: ACI. Farmington Hills, MI: ACI.
Adelzadeh, M., M. F. Green, and N. Bénichou. 2012. “Behaviour of fibre reinforced polymer-strengthened T-beams and slabs in fire.” Proc. Inst. Civ. Eng. Struct. Build. 165 (7): 361–371. https://doi.org/10.1680/stbu.11.00014.
Adelzadeh, M., H. Hajiloo, and M. Green. 2014. “Numerical study of FRP reinforced concrete slabs at elevated temperature.” Polymers 6: 408–422. https://doi.org/10.3390/polym6020408.
Ahmed, E. A., B. Benmokrane, and M. Sansfaçon. 2017. “Case study: Design, construction, and performance of the La Chancelière parking Garage’s concrete flat slabs reinforced with GFRP bars.” J. Compos. Constr. 21 (1): 05016001. https://doi.org/10.1061/(asce)cc.1943-5614.0000656.
Aiello, M. A. 1999. “Concrete cover failure in FRP reinforced beams under thermal loading.” J. Compos. Constr. 3 (1): 46–52. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:1(46).
Aiello, M. A., F. Focacci, P. C. Huang, and A. Nanni. 1999. “Cracking of concrete cover in FRP reinforced concrete elements under thermal loads.” In Proc., 4th Int. Symp. on Fibre-Reinforced-Plastic for Reinforcement of Concrete Structures, edited by C. W. Dolan, S. H. Rizkalla, and A. Nanni, 233–243. Farmington Hills, MI: ACI.
AlAjarmeh, O., A. Manalo, B. Benmokrane, P. Schubel, X. Zeng, A. Ahmad, R. Hassanli, and C.-D. Sorbello. 2022. “Compression behavior of GFRP bars under elevated in-service temperatures.” Constr. Build. Mater. 314: 125675. https://doi.org/10.1016/j.conbuildmat.2021.125675.
Alsayed, S., Y. Al-Salloum, T. Almusallam, S. El-Gamal, and M. Aqel. 2012. “Performance of glass fiber reinforced polymer bars under elevated temperatures.” Composites, Part B 43 (5): 2265–2271. https://doi.org/10.1016/j.compositesb.2012.01.034.
Alvarez, A., A. Zaidi, and R. Masmoudi. 2007. “Bond-slip behaviour of FRP bars under low and high temperature – experimental and theoretical studies.” In Proc., 3rd Int. Conf., on Durability & Field Applications of Fiber Reinforced Polymer Composites for Construction, 523–530. Sherbrooke, QC: University of Sherbrooke.
Ashrafi, H., M. Bazli, A. Jafari, and T. Ozbakkaloglu. 2020. “Tensile properties of GFRP laminates after exposure to elevated temperatures: Effect of fiber configuration, sample thickness, and time of exposure.” Compos. Struct. 238: 111971. https://doi.org/10.1016/j.compstruct.2020.111971.
Ashrafi, H., M. Bazli, E. P. Najafabadi, and A. Vatani Oskouei. 2017. “The effect of mechanical and thermal properties of FRP bars on their tensile performance under elevated temperatures.” Constr. Build. Mater. 157: 1001–1010. https://doi.org/10.1016/j.conbuildmat.2017.09.160.
Ashrafi, H., M. Bazli, A. Vatani Oskouei, and L. Bazli. 2018. “Effect of sequential exposure to UV radiation and water vapor condensation and extreme temperatures on the mechanical properties of GFRP bars.” J. Compos. Constr. 22 (1): 04017047. https://doi.org/10.1061/(asce)cc.1943-5614.0000828.
Aslani, F. 2019. “Residual bond between concrete and reinforcing GFRP rebars at elevated temperatures.” Proc. Inst. Civ. Eng. Struct. Build. 172 (2): 127–140. https://doi.org/10.1680/jstbu.17.00126.
ASTM. 2022. Standard specification for solid round glass fiber reinforced polymer bars for concrete reinforcement. ASTM D7957/D7957M-22. West Conshohocken, PA: ASTM.
Aydin, F. 2018. “Experimental investigation of thermal expansion and concrete strength effects on FRP bars behavior embedded in concrete.” Constr. Build. Mater. 163: 1–8. https://doi.org/10.1016/j.conbuildmat.2017.12.101.
Ba, G., J. Miao, W. Zhang, and C. Liu. 2016. “Influence of cracking on heat propagation in reinforced concrete structures.” J. Struct. Eng. 142 (7): 04016035. https://doi.org/10.1061/(asce)st.1943-541x.0001483.
Ba, G., J. Miao, W. Zhang, and J. Liu. 2019. “Influence of reinforcement corrosion on fire performance of reinforced concrete beams.” Constr. Build. Mater. 213: 738–747. https://doi.org/10.1016/j.conbuildmat.2019.04.065.
Bai, Y., and T. Keller. 2009a. “Time dependence of material properties of FRP composites in fire.” J. Compos. Mater. 43 (21): 2469–2484. https://doi.org/10.1177/0021998309344641.
Bai, Y., and T. Keller. 2009b. “Modeling of strength degradation for fiber-reinforced polymer composites in fire.” J. Compos. Mater. 43 (21): 2371–2385. https://doi.org/10.1177/0021998309344642.
Bank, L. C. 2006. Composites for construction - structural design with FRP materials. Hoboken, NJ: Wiley.
Bellakehal, H., A. Zaidi, R. Masmoudi, and M. Bouhicha. 2014. “Behavior of FRP bars-reinforced concrete slabs under temperature and sustained load effects.” Polymers 6: 873–889. https://doi.org/10.3390/polym6030873.
Benmokrane, B., E. El-Salakawy, Z. Cherrak, and A. Wiseman. 2004. “Fibre reinforced polymer composite bars for the structural concrete slabs of a Public Works and Government Services Canada parking garage.” Can. J. Civ. Eng. 31 (5): 732–748. https://doi.org/10.1139/L04-049.
Bilotta, A., A. Compagnone, L. Esposito, and E. Nigro. 2020. “Structural behaviour of FRP reinforced concrete slabs in fire.” Eng. Struct. 221: 111058. https://doi.org/10.1016/j.engstruct.2020.111058.
Bisby, L., and T. Stratford. 2013. “Design for fire of concrete elements strengthened or reinforced with fibre-reinforced polymer: State of the art and opportunities from performance-based approaches.” Can. J. Civ. Eng. 40 (11): 1034–1043. https://doi.org/10.1139/cjce-2012-0506.
Bisby, L. A. 2003. “Fire behaviour of fibre-reinforced polymer (FRP) reinforced or confined concrete.” Ph.D. thesis, Dept. of Civil Engineering, Queen’s Univ.
Bisby, L. A., M. F. Green, and V. K. R. Kodur. 2005a. “Response to fire of concrete structures that incorporate FRP.” Prog. Struct. Mater. Eng. 7 (3): 136–149. https://doi.org/10.1002/pse.198.
Bisby, L. A., and V. K. R. Kodur. 2007. “Evaluating the fire endurance of concrete slabs reinforced with FRP bars: Considerations for a holistic approach.” Composites, Part B 38 (5–6): 547–558. https://doi.org/10.1016/j.compositesb.2006.07.013.
Bisby, L. A., B. K. Williams, V. K. R. Kodur, M. Green, and E. Chowdhury. 2005b. Fire performance of FRP systems for infrastructure: A state-of-the-art report. Research Rep. No. RR-179. Ottawa, ON, Canada: National Research Council of Canada, Institute for Research in Construction.
Carvelli, V., M. A. Pisani, and C. Poggi. 2013. “High temperature effects on concrete members reinforced with GFRP rebars.” Composites, Part B 54 (1): 125–132. https://doi.org/10.1016/j.compositesb.2013.05.013.
CEN (European Committee for Standardization). 2010a. Design of concrete structures - part 1-2: General rules - structural fire design. Eurocode 2. EN 1992-1-2. Brussels, Belgium: CEN.
CEN (European Committee for Standardization). 2010b. Design of steel structures - part 1–2: General rules - structural fire design. Eurocode 3. EN 1993-1-2. Brussels, Belgium: CEN.
Chaallal, O., and B. Benmokrane. 1993. “Physical and mechanical performance of an innovative glass-fiber-reinforced plastic rod for concrete and grouted anchorages.” Can. J. Civ. Eng. 20 (2): 254–268. https://doi.org/10.1139/l93-031.
Clarke, J. 1993. Alternative materials for reinforcement and prestressing of concrete. Glasgow, UK: Blackie Academic and Professional.
Correia, J. R., M. M. Gomes, J. M. Pires, and F. A. Branco. 2013. “Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: Experiments and model assessment.” Compos. Struct. 98: 303–313. https://doi.org/10.1016/j.compstruct.2012.10.051.
Cosenza, E., G. Manfredi, and R. Realfonzo. 1995. “Analytical modelling of bond between FRP reinforcing bars and concrete.” In Proc., 2nd Int. RILEM Symp. Non-Metallic (Fibre-Reinforced Polymer) Reinforcement for Concrete Structures, edited by L. Taerwe E, and F. N. Spon. Boca Raton, FL: CRC Press.
Cosenza, E., G. Manfredi, and R. Realfonzo. 1996. “Bond characteristics and anchorage length of FRP rebars.” In Proc., 2nd Int. Conf., on Advanced Composite Materials in Bridges and Structures, edited by M. El-Badry. Montreal, QC: Canadian Society for Civil Engineering.
CSA (Canadian Standard Association). 2010. Specification for fibre-reinforced polymers. CAN/CSA-S807-10 (R2015). Rexdale, ON, Canada: CSA.
CSA (Canadian Standards Association). 2017. Design and construction of building structures with fibre-reinforced polymers. CAN/CSA-S806-12. Rexdale, ON, Canada: CSA.
Del Prete, I., A. Bilotta, L. Bisby, and E. Nigro. 2021. “Elevated temperature response of RC beams strengthened with NSM FRP bars bonded with cementitious grout.” Compos. Struct. 258: 113182. https://doi.org/10.1016/j.compstruct.2020.113182.
Dimitrienko, Y. I. 1997a. “Thermomechanical behaviour of composite materials and structures under high temperatures: 1. Materials.” Composites, Part A 28 (5): 453–461. https://doi.org/10.1016/S1359-835X(96)00144-3.
Dimitrienko, Y. I. 1997b. “Thermomechanics of composite materials and structures under high temperatures: 1. Materials.” Composites, Part A 28: 453–461. https://doi.org/10.1016/S1359-835X(96)00144-3.
Dimitrienko, Y. I. 1999. Thermomechanics of composites under high temperatures. London: Klewer Academic Publishers.
Duan, D., L. Ouyang, W. Gao, Q. Xu, W. Liu, and J. Yang. 2022. “Fire performance of FRP-RC flexural members: A numerical study.” Polymers 14: 346.
Duarte, A. P. C., I. C. Rosa, M. R. T. Arruda, J. P. Firmo, and J. R. Correia. 2022. “Three-Dimensional finite-element modeling of the thermomechanical response of GFRP-reinforced concrete slab strips subjected to fire.” J. Compos. Constr. 26 (5): 04022044. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001234.
El-Gamal, S. 2014. “Bond strength of glass fiber-reinforced polymer bars in concrete after exposure to elevated temperatures.” J. Reinf. Plast. Compos. 33 (23): 2151–2163. https://doi.org/10.1177/0731684414555408.
Eligehausen, R., E. P. Popov, and V. V. Bertero. 1983. Local bond stress-slip relationships of deformed bars under generalized excitations. Rep. No. UCB/EERC-83/23. Berkeley, CA: Earthquake Engineering Research Center, Univ. of California.
Ellis, D., H. Tabatabai, and A. Nabizadeh. 2018. “Residual tensile strength and bond properties of GFRP bars after exposure to elevated temperatures.” Materials 11 (3): 346–314. https://doi.org/10.3390/ma11030346.
Ervine, A., M. Gillie, T. J. Stratford, and P. Pankaj. 2012. “Thermal propagation through tensile cracks in reinforced concrete.” J. Mater. Civ. Eng. 24 (5): 516–522. https://doi.org/10.1061/(asce)mt.1943-5533.0000417.
Fanucci, J. P. 1987. “Thermal response of radiantly heated kevlar and graphite/epoxy composites.” J. Compos. Mater. 21 (2): 129–139. https://doi.org/10.1177/002199838702100204.
Feih, S., E. Boiocchi, G. Mathys, Z. Mathys, A. G. Gibson, and A. P. Mouritz. 2011. “Mechanical properties of thermally-treated and recycled glass fibres.” Composites, Part B 42 (3): 350–358. https://doi.org/10.1016/j.compositesb.2010.12.020.
fib (International Federation for Structural Concrete). 2000. Bond of reinforcement in concrete. Bulletin 10. Lausanne, Switzerland: fib.
fib (International Federation for Structural Concrete). 2007. FRP reinforcement for RC structures. Bulletin 40. Lausanne, Switzerland: fib.
Galati, N., A. Nanni, L. R. Dharani, F. Focacci, and M. A. Aiello. 2006. “Thermal effects on bond between FRP rebars and concrete.” Composites, Part A 37 (8): 1223–1230. https://doi.org/10.1016/j.compositesa.2005.05.043.
Gentry, T. R., and C. E. Hudak. 1996. “Thermal compatibility of plastic composite reinforcement and concrete.” In Advanced Composite Materials for Bridges and Structures, edited by M. El-Badry, 149–156. Montreal, Canada: Avantage Inc.
Gentry, T. R., and M. Husain. 1999. “Thermal compatibility of concrete and composite reinforcements.” J. Compos. Constr. 3 (2): 82–86. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:2(82).
Gooranorimi, O., G. Claure, F. De Caso, W. Suaris, and A. Nanni. 2018. “Post-fire behavior of GFRP bars and GFRP-RC slabs.” J. Mater. Civ. Eng. 30 (3): 04017296. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002168.
Griffis, C. A., R. A. Masumura, and C. I. Chang. 1981. “Thermal response of graphite epoxy composite subjected to rapid heating.” J. Compos. Mater. 15 (5): 427–442. https://doi.org/10.1177/002199838101500503.
Gurung, S., and S. Salem. 2021. “Effects of load level on the structural fire behaviour of GFRP-reinforced concrete beams with straight-end bar lap splices.” In Vol. 2 of Proc., 8th Int. Conf., on Advanced Composite Materials in Bridges and Structures, edited by B. Benmokrane, K. Mohamed, A. Farghaly, and H. Mohamed, 85–92. Cham, Switzerland: Springer.
Hajiloo, H., and M. F. Green. 2018a. “Post-fire residual properties of GFRP reinforced concrete slabs: A holistic investigation.” Compos. Struct. 201: 398–413. https://doi.org/10.1016/j.compstruct.2018.06.047.
Hajiloo, H., and M. F. Green. 2018b. “Bond strength of GFRP reinforcing bars at high temperatures with implications for performance in fire.” J. Compos. Constr. 22 (6): 04018055. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000897.
Hajiloo, H., and M. F. Green. 2019. “GFRP reinforced concrete slabs in fire: Finite element modelling.” Eng. Struct. 183: 1109–1120. https://doi.org/10.1016/j.engstruct.2019.01.028.
Hajiloo, H., M. F. Green, and J. Gales. 2018. “Mechanical properties of GFRP reinforcing bars at high temperatures.” Constr. Build. Mater. 162: 142–154. https://doi.org/10.1016/j.conbuildmat.2017.12.025.
Hajiloo, H., M. F. Green, M. Noël, N. Bénichou, and M. Sultan. 2019. “GFRP-Reinforced Concrete slabs: Fire resistance and design efficiency.” J. Compos. Constr. 23 (2): 04019009. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000937.
Hajiloo, H., M. F. Green, M. Noël, N. Bénichou, and M. Sultan. 2017. “Fire tests on full-scale FRP reinforced concrete slabs.” Compos. Struct. 179: 705–719. https://doi.org/10.1016/j.compstruct.2017.07.060.
Hamad, R. J. A., M. A. Johari, and R. H. Haddad. 2017. “Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures.” Constr. Build. Mater. 142: 521–535. https://doi.org/10.1016/j.conbuildmat.2017.03.113.
Hamad, R. J. A., M. A. Megat Johari, and R. H. Haddad. 2019. “Effects of bars slippage on the pre-and post-heating flexural behavior of FRP reinforced concrete beams: Experimental and theoretical investigations.” Int. J. Civ. Eng. Technol. 10 (2): 574–602.
Hawileh, R. A., and M. Z. Naser. 2012. “Thermal-stress analysis of RC beams reinforced with GFRP bars.” Composites, Part B 43 (5): 2135–2142. https://doi.org/10.1016/j.compositesb.2012.03.004.
Henderson, J. B., J. A. Wiebelt, and M. R. Tant. 1985. “A model for the thermal response of polymer composite materials with experimental verification.” J. Compos. Mater. 19 (6): 579–595. https://doi.org/10.1177/002199838501900608.
ISIS Canada (Intelligent Sensing for Innovative Structures). 2007. Reinforcing concrete structures with fibre-reinforced polymers. Design manual No. 3. Version 2. Winnipeg, MB, Canada: ISIS Canada.
Jahanzaib, B., S. A. Sheikh, Z. Kharal, and H. Almansour. 2022. “Bond behaviour of GFRP bars with concrete at normal and high temperatures.” In Proc., 10th Int. Conf., on Fibre-Reinforced Polymer Composites in Civil Engineering, edited by A. Ilki, M. Ispir, and P. Inci, 275–286. Cham, Switzerland: Springer.
JSCE (Japan Society of Civil Engineers). 1997. Recommendations for design and construction of concrete structures using continuous fibre reinforcing materials. Tokyo: JSCE.
Katz, A., and N. Berman. 2000. “Modeling the effect of high temperature on the bond of FRP reinforcing bars to concrete.” Cem. Concr. Compos. 22 (6): 433–443. https://doi.org/10.1016/S0958-9465(00)00043-3.
Katz, A., N. Berman, and L. C. Bank. 1999. “Effect of high temperature on bond strength of FRP rebars.” J. Compos. Constr. 3 (2): 73–81. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:2(73).
Khaneghahi, M. H., E. P. Najafabadi, P. Shoaei, and A. V. Oskouei. 2018. “Effect of intumescent paint coating on mechanical properties of FRP bars at elevated temperature.” Polym. Test. 71: 72–86. https://doi.org/10.1016/j.polymertesting.2018.08.020.
Kiari, M., T. Stratford, and L. A. Bisby. 2015. “New design of beam FRP reinforcement for fire performance.” In Proc., 5th Int. Workshop on Performance, Protection and Strengthening of Structures Under Extreme Loading, edited by V. K. R. Kodur and N. Banthia, 764–771. Lancaster, Pennsylvania: DEStech Publications Inc.
Kiari, M., T. J. Stratford, and L. A. Bisby. 2016. “New approach to fire safe application of fibre-reinforced polymer reinforcement for concrete.” In Proc., 7th Int. Conf., on Advanced Composite Materials in Bridges and Structures. Vancouver, BC: University of British Columbia.
Kiari, M., E. Triantafyllidou, S. Grosu, T. Stratford, and L. Bisby. 2013. “Design of an FRP-reinforced concrete beam system for fire performance.” In Advanced Composites in Construction Conf., 2013, edited by C. J. Whysall, and S. E. Taylor. Derbyshire, UK: NetComposites.
Kodur, V. 2014. “Properties of concrete at elevated temperatures.” ISRN Civ. Eng. 2014: 468510. https://doi.org/10.1155/2014/468510.
Kodur, V. K. R., and D. Baingo. 1998. Fire resistance of FRP reinforced concrete slabs. Internal Rep. No. 758. Ottawa, ON, Canada: National Research Council Canada.
Kodur, V. K. R., and L. A. Bisby. 2005. “Evaluation of fire endurance of concrete slabs reinforced with fiber-reinforced polymer bars.” J. Struct. Eng. 131 (1): 34–43. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(34).
Kodur, V. K. R., L. A. Bisby, and S. H.-C. Foo. 2005. “Thermal behavior of fire-exposed concrete slabs reinforced with fiber-reinforced polymer bars.” ACI Struct. J. 102 (6): 799–807. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(34).
Kodur, V. K. R., and M. A. Sultan. 2003. “Effect of temperature on thermal properties of high-strength concrete.” J. Mater. Civ. Eng. 15 (2): 101–107. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(101).
Kumahara, S., Y. Masuda, H. Tanano, and A. Shimizu. 1993. “Tensile strength of continuous fibre bar under high temperature.” In Proc., Int. Symp. Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, edited by A. Nanni and C. W. Dolan, 731–742. Detroit, MI: American Concrete Institute.
Li, C., D. Gao, Y. Wang, and J. Tang. 2017. “Effect of high temperature on the bond performance between basalt fibre reinforced polymer (BFRP) bars and concrete.” Constr. Build. Mater. 141: 44–51. https://doi.org/10.1016/j.conbuildmat.2017.02.125.
Lie, T. T. 1978. “Calculation of the fire resistance of composite concrete floor and roof slabs.” Fire Technol. 14 (1): 28–45. https://doi.org/10.1007/BF01997259.
Lin, X., and Y. X. Zhang. 2013. “Nonlinear finite element analyses of steel/FRP-reinforced concrete beams in fire conditions.” Compos. Struct. 97: 277–285. https://doi.org/10.1016/j.compstruct.2012.09.042.
Maluk, C., L. Bisby, G. Terrasi, E. Hugi, and M. Green. 2011. “Bond strength degradation for CFRP and steel bars in concrete at elevated temperature.” In American concrete institute special publication on advances in fire design of concrete structures. Farmington Hills, MI: ACI.
Maraveas, C., K. Miamis, and A. A. Vrakas. 2012. “Fiber-reinforced polymer-strengthened/reinforced concrete structures exposed to fire: A review.” Struct. Eng. Int. 22 (4): 500–513. https://doi.org/10.2749/101686612X13363929517613.
Masmoudi, A., R. Masmoudi, and M. Ben Ouezdou. 2010. “Thermal effects on GFRP rebars: Experimental study and analytical analysis.” Mater. Struct. 43 (6): 775–788. https://doi.org/10.1617/s11527-009-9547-2.
Masmoudi, R., A. Masmoudi, M. Ben Ouezdou, and A. Daoud. 2011. “Long-term bond performance of GFRP bars in concrete under temperature ranging from 20°C to 80°C.” Constr. Build. Mater. 25: 486–493. https://doi.org/10.1016/j.conbuildmat.2009.12.040.
Masmoudi, R., A. Zaidi, and P. Gérard. 2005. “Transverse thermal expansion of FRP bars embedded in concrete.” J. Compos. Constr. 9 (5): 377–387. https://doi.org/10.1061/(ASCE)1090-0268(2005)9.
Matthys, S., G. De Shutter, and L. Taerwe. 1996. “Influence of transverse thermal expansion of FRP reinforcement on the critical concrete cover.” In Advanced Composite Materials for Bridges and Structures, edited by M. El-Badry. Washington, DC: National Academy of Sciences.
McIntyre, E. 2019. “Fire performance of fibre reinforced polymer (FRP) bars in reinforced concrete: an experimental approach.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Edinburgh.
McIntyre, E., A. Bilotta, L. Bisby, and E. Nigro. 2014. “Mechanical properties of fibre reinforced polymer reinforcement for concrete at high temperature.” In Vol. 1 of Proc., 8th Int. Conf., on Structures in Fire, edited by G.-Q. Li, V. Kodur, S.-C. Jiang, J. Jiang, S.-W. Chen, and G.-B. Lou, 1227–1231. Yangpu Qu, China: Tongji University Press.
Miller, J. R., and P. M. Weaver. 2003. “Temperature profiles in composite plates subject to time-dependent complex boundary conditions.” Compos. Struct. 59 (2): 267–278. https://doi.org/10.1016/S0263-8223(02)00054-5.
Morley, P. D., and R. Royles. 1983. “Response of the bond in reinforced concrete to high temperatures.” Mag. Concr. Res. 35 (123): 67–74. https://doi.org/10.1680/macr.1983.35.124.157.
Mouritz, A. P., and A. G. Gibson. 2006. “Fire properties of polymer composite materials.” In Vol. 143 of Solid Mechanics and its Applications, edited by G. M. L. Gladwell. Dordrecht, Netherlands: Springer.
Mousavi, A., H. Hajiloo, and M. F. Green. 2021. “Bond performance of GFRP reinforcing bars under uniform or gradient temperature distributions.” J. Compos. Constr. 25 (6): 1–13. https://doi.org/10.1061/(asce)cc.1943-5614.0001169.
Najafabadi, E. P., A. V. Oskouei, M. H. Khaneghahi, P. Shoaei, and T. Ozbakkaloglu. 2019. “The tensile performance of FRP bars embedded in concrete under elevated temperatures.” Constr. Build. Mater. 211: 1138–1152. https://doi.org/10.1016/j.conbuildmat.2019.03.239.
Nigro, E., A. Bilotta, G. Cefarelli, G. Manfredi, and E. Cosenza. 2012a. “Performance under fire situations of concrete members reinforced with FRP rods: Bond models and design nomograms.” J. Compos. Constr. 16 (4): 395–406. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000279.
Nigro, E., G. Cefarelli, and A. Billota. 2012b. “Comparison between results of numerical simulations and experimental tests on FRP RC slabs in fire situation.” In Proc., 7th Int. Conf., on Structures in Fire, edited by M. Fontana, A. Frangi and M. Knobloch, 649–658. ETH Zurich, Switzerland: EMPA Materials Science and Technology.
Nigro, E., G. Cefarelli, A. Bilotta, G. Manfredi, and E. Cosenza. 2011a. “Fire resistance of concrete slabs reinforced with FRP bars. Part II: Experimental results and numerical simulations on the thermal field.” Composites, Part B 42 (6): 1751–1763. https://doi.org/10.1016/j.compositesb.2011.02.026.
Nigro, E., G. Cefarelli, A. Bilotta, G. Manfredi, and E. Cosenza. 2011b. “Fire resistance of concrete slabs reinforced with FRP bars. part I: Experimental investigations on the mechanical behavior.” Composites, Part B 42: 1739–1750. https://doi.org/10.1016/j.compositesb.2011.02.025.
Nigro, E., G. Cefarelli, A. Bilotta, G. Manfredi, and E. Cosenza. 2012c. “Behavior of FRP reinforced concrete slabs in case of fire: Theoretical models and experimental tests.” Adv. Struct. Eng. 15 (4): 637–652. https://doi.org/10.1260/1369-4332.15.4.637.
Nour, O., O. Salem, and A. Mostafa. 2022. “Experimental fire testing of large-scale glass fibre-reinforced polymer-reinforced concrete beams with mid-span straight-end bar lap splices.” Fire Mater. 46: 360–375. https://doi.org/10.1002/fam.2960.
NRC (National Research Council). 2007. Guide for the design and construction of concrete structures reinforced with fiber-reinforced polymer bars. CNR-DT 203/2006. Rome: NRC.
Özkal, F. M., M. Polat, M. Yağan, and M. O. Öztürk. 2018. “Mechanical properties and bond strength degradation of GFRP and steel rebars at elevated temperatures.” Constr. Build. Mater. 184: 45–57. https://doi.org/10.1016/j.conbuildmat.2018.06.203.
Pagani, R., M. Bocciarelli, V. Carvelli, and M. A. Pisani. 2014. “Modelling high temperature effects on bridge slabs reinforced with GFRP rebars.” Eng. Struct. 81: 318–326. https://doi.org/10.1016/j.engstruct.2014.10.012.
Prokeš, J., I. Rozsypalová, F. Girgle, P. Daněk, and P. Štěpánek. 2021. “Effects of elevated temperature on the behaviour of concrete beams reinforced with fiber reinforced polymers.” IOP Conf. Ser.: Mater. Sci. Eng. 1039 (1): 012008. https://doi.org/10.1088/1757-899X/1039/1/012008.
Rafi, M. M., and A. Nadjai. 2011. “Behavior of hybrid (steel-CFRP) and CFRP bar-reinforced concrete beams in fire.” J. Compos. Mater. 45 (15): 1573–1584. https://doi.org/10.1177/0021998310385022.
Rafi, M. M., and A. Nadjai. 2013. “Numerical modelling of carbon fibre-reinforced polymer and hybrid reinforced concrete beams in fire.” Fire Mater. 37: 374–390. https://doi.org/10.1002/fam.2135.
Rafi, M. M., and A. Nadjai. 2014. “Parametric finite element analysis of FRP reinforced concrete beams in fire and design guidelines.” Fire Mater. 38: 293–311. https://doi.org/10.1002/fam.2180.
Rafi, M. M., A. Nadjai, and F. Ali. 2007. “Fire resistance of carbon FRP reinforced-concrete beams.” Mag. Concr. Res. 59 (4): 245–255. https://doi.org/10.1680/macr.2007.59.4.245.
Rafi, M. M., A. Nadjai, and F. Ali. 2008. “Finite element modeling of carbon fiber-reinforced polymer reinforced concrete beams under elevated temperatures.” ACI Struct. J. 105 (6): 701–710.
Rafi, M. M., A. Nadjai, F. Ali, and P. O’Hare. 2011. “Evaluation of thermal resistance of FRP reinforced concrete beams in fire.” J. Struct. Fire Eng. 2 (2): 91–107. https://doi.org/10.1260/2040-2317.2.2.91.
Robert, M., and B. Benmokrane. 2010. “Behavior of GFRP reinforcing bars subjected to extreme temperatures.” J. Compos. Constr. 14 (4): 353–360. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000092.
Rosa, I. C. 2022. “Fire behaviour of concrete structures reinforced with GFRP bars.” Ph.D. thesis, Dept. of Civil Engineering, Instituto Superior Técnico, Univ. of Lisbon.
Rosa, I. C., M. R. T. Arruda, J. P. Firmo, and J. R. Correia. 2022a. “Bond behavior of straight and bent glass fiber–reinforced polymer bars at elevated temperatures: Pull-Out tests and numerical simulations.” J. Compos. Constr. 26 (3): 04022028. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001213.
Rosa, I. C., J. P. Firmo, and J. R. Correia. 2022b. “Experimental study of the tensile behaviour of GFRP reinforcing bars at elevated temperatures.” Constr. Build. Mater. 324: 126676. https://doi.org/10.1016/j.conbuildmat.2022.126676.
Rosa, I. C., J. P. Firmo, and J. R. Correia. 2022c. “Fire behaviour of GFRP-reinforced concrete slab strips. effect of straight and 90° bent tension lap splices.” Eng. Struct. 270: 114904. https://doi.org/10.1016/j.engstruct.2022.114904.
Rosa, I. C., J. P. Firmo, J. R. Correia, and J. A. O. Barros. 2019. “Bond behaviour of sand coated GFRP bars to concrete at elevated temperature – Definition of bond vs. slip relations.” Composites, Part B 160: 329–340. https://doi.org/10.1016/j.compositesb.2018.10.020.
Rosa, I. C., J. P. Firmo, J. R. Correia, and P. Mazzuca. 2021. “Influence of elevated temperatures on the bond behaviour of ribbed GFRP bars in concrete.” Cem. Concr. Compos. 122: 104119. https://doi.org/10.1016/j.cemconcomp.2021.104119.
Rosa, I. C., P. Santos, J. P. Firmo, and J. R. Correia. 2020. “Fire behaviour of concrete slab strips reinforced with sand-coated GFRP bars.” Compos. Struct. 244: 112270. https://doi.org/10.1016/j.compstruct.2020.112270.
Rozsypalova, I., J. Prokes, D. Cairovic, F. Girgle, P. Danek, and P. Stepanek. 2021. “Research on the residual tensile strength of composite reinforcing bars exposed to elevated temperatures.” IOP Conf. Ser.: Mater. Sci. Eng. 1205: 012011. https://doi.org/10.1088/1757-899X/1205/1/012011.
Saafi, M. 2002. “Effect of fire on FRP reinforced concrete members.” Compos. Struct. 58 (1): 11–20. https://doi.org/10.1016/S0263-8223(02)00045-4.
Sadek, A. W., M. M. El-Hawary, and A. El-Deeb. 2005. “Fire resistance testing of concrete beams reinforced by GFRP rebars.” J. Appl. Fire Sci. 14 (2): 91–104. https://doi.org/10.2190/J765-W878-2R01-4513.
Schmitt, A., V. Carvelli, and M. Pahn. 2015. “Thermo-mechanical loading of GFRP reinforced thin concrete panels.” Composites, Part B 81: 35–43. https://doi.org/10.1016/j.compositesb.2015.06.020.
Schöck. 2013. “Schöck ComBAR - Technical information.” Technical datasheet. Baden-Baden, Germany: Schöck Bauteile GmbH.
Schöck. 2022. “Case studies - District Leimbach.” Accessed January 13, 2023. https://www.schoeck.com/en/case-studies/district-leimbach.
Scott, E. P., and J. V. Beck. 1992. “Estimation of thermal properties in epoxy matrix/carbon fiber composite materials.” J. Compos. Mater. 26 (1): 132–149. https://doi.org/10.1177/002199839202600109.
Sena-Cruz, J. M. 2005. “Strengthening of concrete structures with near-surface mounted CFRP laminate strips.” Ph.D. thesis, Dept. of Civil Enginerring, Universidade do Minho.
Silverman, E. M. 1983. “Elevated temperature testing for comparison of glass/resin composites.” Polym. Compos. 4 (4): 214–218. https://doi.org/10.1002/pc.750040404.
Solyom, S., M. Di Benedetti, M. Guadagnini, and G. L. Balázs. 2020. “Effect of temperature on the bond behaviour of GFRP bars in concrete.” Composites, Part B 183: 107602. https://doi.org/10.1016/j.compositesb.2019.107602.
Spagnuolo, S., A. Meda, Z. Rinaldi, and A. Nanni. 2018. “Residual behaviour of glass FRP bars subjected to high temperatures.” Compos. Struct. 203: 886–893. https://doi.org/10.1016/j.compstruct.2018.07.077.
Stang, H., and T. Aarre. 1992. “Evaluation of crack width in FRC with conventional reinforcement.” Cem. Concr. Compos. 14 (2): 143–154. https://doi.org/10.1016/0958-9465(92)90007-I.
Sumida, A., and H. Mutsuyoshi. 2008. “Mechanical properties of newly developed heat-resistant FRP bars.” J. Adv. Concr. Technol. 6 (1): 157–170. https://doi.org/10.3151/jact.6.157.
Tanano, H., Y. Masuda, T. Kage, H. Fukuyama, I. Nishida, and T. Hashimoto. 1995. “Fire resistance of continuous fibre reinforced concrete.” In Non-Metallic (Fibre-Reinforced-Plastic) Reinforcement for Concrete Structures, edited by L. Taerwe, 368–375. London: E&FN Spon.
Vejmelková, E., P. Padevět, and R. Černý. 2008. “Effect of cracks on hygric and thermal characteristics of concrete.” Bauphysik 30 (6): 438–444. https://doi.org/10.1002/bapi.200810058.
Veljkovic, A., V. Carvelli, and M. Rezazadeh. 2022. “Modelling the bond of GFRP bar and concrete for the thermo-mechanical behaviour of RC slabs.” In Proc., 10th Int. Conf., on Fibre-Reinforced-Plastic Composites in Civil Engineering, edited by A. Ilki, and M. Ispir, 963–972. Cham, Switzerland: Springer.
Veljkovic, A., V. Carvelli, S. Solyom, G. L. Balázs, and M. Rezazadeh. 2019. “Modelling the temperature effects at the interface between GFRP bar and concrete.” In Proc., International Association for Bridge and Structural Engineering Symp. 2019 Guimarães - Towards a Resilient Built Environment - Risk and Asset Management, 1065–1072. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE).
Wang, X. L., and X. X. Zha. 2011. “Experimental research on mechanical behavior of GFRP bars under high temperature.” Appl. Mech. Mater. 71–78: 3591–3594. https://doi.org/10.4028/www.scientific.net/AMM.71-78.3591.
Wang, Y. C., and V. Kodur. 2005. “Variation of strength and stiffness of fibre reinforced polymer reinforcing bars with temperature.” Cem. Concr. Compos. 27 (9–10): 864–874. https://doi.org/10.1016/j.cemconcomp.2005.03.012.
Weber, A. 2008. “Fire-resistance tests on composite rebars.” In Proc., 4th Int. Conf., of Fibre-Reinforced-Plastic Composites in Civil Engineering. Zurich, Switzerland: Swiss Federal Institute of Technology (EPFL).
Williams, B., V. Kodur, M. Green, and L. Bisby. 2008. “Fire endurance of fiber-reinforced polymer strengthened concrete T-beams.” ACI Struct. J. 105 (1): 60–67. https://doi.org/10.14359/19069.
Wu, B., W. Xiong, and B. Wen. 2014. “Thermal fields of cracked concrete members in fire.” Fire Saf. J. 66: 15–24. https://doi.org/10.1016/j.firesaf.2014.04.003.
Yu, B., and V. K. R. Kodur. 2013. “Factors governing the fire response of concrete beams reinforced with FRP rebars.” Compos. Struct. 100: 257–269. https://doi.org/10.1016/j.compstruct.2012.12.028.
Yu, B., V. Till, and K. Thomas. 2007. “Modeling of thermo-physical properties for FRP composites under elevated and high temperature.” Compos. Sci. Technol. 67 (15–16): 3098–3109. https://doi.org/10.1016/j.compscitech.2007.04.019.
Zaidi, A., M. M. Brahim, K. Mouattah, and R. Masmoudi. 2017. “FRP properties effect on numerical deformations in FRP bars-reinforced concrete elements in hot zone.” Energy Procedia 139: 798–803. https://doi.org/10.1016/j.egypro.2017.11.290.
Zaidi, A., R. Masmoudi, and M. Bouhicha. 2013. “Numerical analysis of thermal stress-deformation in concrete surrounding FRP bars in hot region.” Constr. Build. Mater. 38: 204–213. https://doi.org/10.1016/j.conbuildmat.2012.08.047.
Zhang, H. Y., Q. Y. Li, V. Kodur, and H. R. Lv. 2021. “Effect of cracking and residual deformation on behavior of concrete beams with different scales under fire exposure.” Eng. Struct. 245: 112886. https://doi.org/10.1016/j.engstruct.2021.112886.
Zhou, C., J. Pan, Z. Zhang, and Y. Zhu. 2022. “Comparative study on the tensile mechanical behavior of GFRP bars under and after high temperature exposure.” Case Stud. Constr. Mater. 16: e00905. https://doi.org/10.1016/j.cscm.2022.e00905.

Information & Authors

Information

Published In

Go to Journal of Composites for Construction
Journal of Composites for Construction
Volume 27Issue 5October 2023

History

Received: Jan 13, 2023
Accepted: Jun 15, 2023
Published online: Aug 8, 2023
Published in print: Oct 1, 2023
Discussion open until: Jan 8, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (corresponding author). ORCID: https://orcid.org/0000-0001-5327-1558. Email: [email protected]
CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal. ORCID: https://orcid.org/0000-0003-3449-3686. Email: [email protected]
João R. Correia, M.ASCE [email protected]
CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal. Email: [email protected]
Luke A. Bisby [email protected]
School of Engineering, Univ. of Edinburgh, William Rankine Building, The King’s Buildings, Edinburgh EH9 3FB, UK. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share