Evaluation of Soil–Structure Interface Models
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 150, Issue 7
Abstract
Modeling of the soil–structure interface has been a critical issue in geotechnical engineering. Numerous studies have simulated complex soil–structure interface behaviors. These models usually are assessed by direct comparisons between the simulations and experiments. However, little work has been done to compare the specific interface behaviors simulated by different interface models. This paper evaluated some frequently recognized interface behaviors for six different interface models. These models either were adopted from the existing literature or modified from the existing soil models, including the exponential model, hyperbolic model, hypoplastic model, MCC model, SANISAND model, and SIMSAND model. Global comparisons and effects of the soil density, normal stiffness, and shearing rate were investigated to evaluate the interface models based on Fontainebleau sand–steel interface experiments and kaolin clay–steel interface experiments. The limitations and advantages of different models under different conditions were discussed.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
All data of this study are available from the corresponding author upon reasonable request.
Acknowledgments
This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No. 15217220, N_PolyU534/20).
References
Akaike, H. 1974. “A new look at the statistical model identification.” IEEE Trans. Autom. Control 19 (6): 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Arnold, M., and I. Herle. 2006. “Hypoplastic description of the frictional behaviour of contacts.” In Numerical methods in geotechnical engineering, 101–106. New York: McGraw-Hill.
Boukpeti, N., and D. J. White. 2017. “Interface shear box tests for assessing axial pipe–soil resistance.” Géotechnique 67 (1): 18–30. https://doi.org/10.1680/jgeot.15.P.112.
Brumund, W. F., and G. A. Leonards. 1973. “Experimental study of static and dynamic friction between sand and typical constuction materials.” J. Test. Eval. 1 (2): 162–165. https://doi.org/10.1520/JTE10893J.
Clough, G. W., and J. M. Duncan. 1971. “Finite element analyses of retaining wall behavior.” ASCE J. Soil Mech. Found. Div. 97 (12): 1657–1673. https://doi.org/10.1061/JSFEAQ.0001713.
DeJong, J. T., and Z. J. Westgate. 2009. “Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior.” J. Geotech. Geoenviron. Eng. 135 (11): 1646–1660. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646).
DeJong, J. T., D. J. White, and M. F. Randolph. 2006. “Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry.” Soils Found. 46 (1): 15–28. https://doi.org/10.3208/sandf.46.15.
Desai, C. S., E. C. Drumm, and M. M. Zaman. 1985. “Cyclic testing and modeling of interfaces.” J. Geotech. Eng. 111 (6): 793–815. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:6(793).
Desai, C. S., and Y. Z. Ma. 1992. “Modeling of joints and interfaces using the disturbed-state concept.” Int. J. Numer. Anal. Methods Geomech. 16 (9): 623–653. https://doi.org/10.1002/nag.1610160903.
Desai, C. S., and D. B. Rigby. 1997. “Cyclic interface and joint shear device including pore pressure effects.” J. Geotech. Geoenviron. Eng. 123 (6): 568–579. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(568).
Di Donna, A., A. Ferrari, and L. Laloui. 2016. “Experimental investigations of the soil–concrete interface: Physical mechanisms, cyclic mobilization, and behaviour at different temperatures.” Can. Geotech. J. 53 (4): 659–672. https://doi.org/10.1139/cgj-2015-0294.
Duque, J., M. Yang, W. Fuentes, D. Mašín, and M. Taiebat. 2022. “Characteristic limitations of advanced plasticity and hypoplasticity models for cyclic loading of sands.” Acta Geotech. 17 (6): 2235–2257. https://doi.org/10.1007/s11440-021-01418-z.
Fakharian, K., and E. Evgin. 1997. “Cyclic simple-shear behavior of sand-steel interfaces under constant normal stiffness condition.” J. Geotech. Geoenviron. Eng. 123 (12): 1096–1105. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1096).
Fakharian, K., and E. Evgin. 2000. “Elasto-plastic modelling of stress-path-dependent behaviour of interfaces.” Int. J. Numer. Anal. Methods Geomech. 24 (2): 183–199. https://doi.org/10.1002/(SICI)1096-9853(200002)24:2%3C183::AID-NAG63%3E3.0.CO;2-3.
Gu, X., Y. Chen, and M. Huang. 2017. “Critical state shear behavior of the soil–structure interface determined by discrete element modeling.” Particuology 35 (Dec): 68–77. https://doi.org/10.1016/j.partic.2017.02.002.
Hansen, N. 2023. “CMA-ES/pycma: r3.3.0.” Accessed January 26, 2023. https://doi.org/10.5281/zenodo.7573532.
Hansen, N. 2016. “The CMA evolution strategy: A tutorial.” Preprint, submitted April 4, 2016. https://arxiv.org/abs/1604.00772.
Hansen, N., and A. Ostermeier. 1996. “Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation.” In Proc., IEEE Int. Conf. on Evolutionary Computation, 312–317. New York: IEEE.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Ho, T., R. Jardine, and N. Anh-Minh. 2011. “Large-displacement interface shear between steel and granular media.” Géotechnique 61 (3): 221–234. https://doi.org/10.1680/geot.8.P.086.
Hu, L. M., and J. L. Pu. 2004. “Testing and modeling of soil-structure interface.” J. Geotech. Geoenviron. Eng. 130 (8): 851–860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851).
Hurvich, C. M., and C.-L. Tsai. 1989. “Regression and time series model selection in small samples.” Biometrika 76 (2): 297–307. https://doi.org/10.1093/biomet/76.2.297.
Jin, Y.-F., Z.-Y. Yin, Z.-X. Wu, and A. Daouadji. 2018. “Numerical modeling of pile penetration in silica sands considering the effect of grain breakage.” Finite Elem. Anal. Des. 144 (May): 15–29. https://doi.org/10.1016/j.finel.2018.02.003.
Kishida, H., and M. Uesugi. 1987. “Tests of the interface between sand and steel in the simple shear apparatus.” Géotechnique 37 (1): 45–52. https://doi.org/10.1680/geot.1987.37.1.45.
Knabe, T., H. F. Schweiger, and T. Schanz. 2012. “Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem.” Can. Geotech. J. 49 (2): 170–183. https://doi.org/10.1139/t11-091.
Kohavi, R. 1995. “A study of cross-validation and bootstrap for accuracy estimation and model selection.” In Vol. 2 of Proc., 14th Int. Joint Conf. on Artificial Intelligence—IJCAI’95, 1137–1143. San Francisco: Morgan Kaufmann Publishers.
Koval, G., F. Chevoir, J. N. Roux, J. Sulem, and A. Corfdir. 2011. “Interface roughness effect on slow cyclic annular shear of granular materials.” Granular Matter 13 (5): 525–540. https://doi.org/10.1007/s10035-011-0267-2.
Lashkari, A. 2013. “Prediction of the shaft resistance of nondisplacement piles in sand.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 904–931. https://doi.org/10.1002/nag.1129.
Lemos, L. J. L., and P. R. Vaughan. 2000. “Clay–interface shear resistance.” Géotechnique 50 (1): 55–64. https://doi.org/10.1680/geot.2000.50.1.55.
Littleton, I. 1976. “An experimental study of the adhesion between clay and steel.” J. Terramech. 13 (3): 141–152. https://doi.org/10.1016/0022-4898(76)90003-3.
Martinez, A., and J. D. Frost. 2017. “The influence of surface roughness form on the strength of sand– structure interfaces.” Géotech. Lett. 7 (1): 104–111. https://doi.org/10.1680/jgele.16.00169.
Martinez, A., and H. H. Stutz. 2019. “Rate effects on the interface shear behaviour of normally and overconsolidated clay.” Géotechnique 69 (9): 801–815. https://doi.org/10.1680/jgeot.17.P.311.
Mortara, G. 2001. “An elastoplastic model for sand-structure interface behaviour under monotonic and cyclic loading.” Ph.D. thesis, Dept. of Structural, Geotechnical and Building Engineering, Politecnico di Torino.
O’Rourke, T. D., S. J. Druschel, and A. N. Netravali. 1990. “Shear strength characteristics of sand-polymer interfaces.” J. Geotech. Eng. 116 (3): 451–469. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(451).
Potyondy, J. G. 1961. “Skin friction between various soils and construction materials.” Géotechnique 11 (4): 339–353. https://doi.org/10.1680/geot.1961.11.4.339.
Pra-Ai, S. 2013. “Behaviour of soil–structure interfaces subjected to large number of cycles. Application to piles.” Ph.D. thesis, École doctorale Ingénierie - Matériaux, Mécanique, Environnement, Énergétique, Procédés, Production (I-MEP2), Université de Grenoble.
Qamar, M. I. A., and M. T. Suleiman. 2023. “Development of cyclic interface shear test device and testing procedure to measure the response of cohesive soil-structure interface.” Geotech. Test. J. 46 (3): 488–509. https://doi.org/10.1520/GTJ20210270.
Richart, F. E., J. R. Hall, and R. D. Woods. 1970. Vibrations of soils and foundations. Upper Saddle River, NJ: Prentice Hall.
Roscoe, K., and JB. Burland. 1968. On the generalized stress-strain behaviour of wet clay. Cambridge, UK: Cambridge University Press.
Schwarz, G. 1978. “Estimating the dimension of a model.” Ann. Stat. 6 (2): 461–464. https://doi.org/10.1214/aos/1176344136.
Staubach, P., J. Machaček, and T. Wichtmann. 2022a. “Mortar contact discretisation methods incorporating interface models based on hypoplasticity and Sanisand: Application to vibratory pile driving.” Comput. Geotech. 146 (Jun): 104677. https://doi.org/10.1016/j.compgeo.2022.104677.
Staubach, P., J. Machaček, and T. Wichtmann. 2022b. “Novel approach to apply existing constitutive soil models to the modelling of interfaces.” Int. J. Numer. Anal. Methods Geomech. 46 (7): 1241–1271. https://doi.org/10.1002/nag.3344.
Stutz, H. 2016. “Hypoplastic models for soil–structure interfaces: Modelling and implementation.” Ph.D. thesis, Faculty of Mathematics and Natural Sciences, Kiel Univ.
Stutz, H., D. Masin, and F. Wuttke. 2016. “Enhancement of a hypoplastic model for granular soil–structure interface behaviour.” Acta Geotech. 11 (6): 1249–1261. https://doi.org/10.1007/s11440-016-0440-1.
Stutz, H., D. Mašín, A. S. Sattari, and F. Wuttke. 2017. “A general approach to model interfaces using existing soil constitutive models application to hypoplasticity.” Comput. Geotech. 87 (Jul): 115–127. https://doi.org/10.1016/j.compgeo.2017.02.010.
Stutz, H., G. Mortara, and F. Wuttke. 2015. “Simple vs advanced interface model: A comparison using a deterministic quality approach.” In Deformation characteristics of geomaterials, 1105–1112. Amsterdam, Netherlands: IOS Press.
Taha, A., and M. Fall. 2013. “Shear behavior of sensitive marine clay-concrete interfaces.” J. Geotech. Geoenviron. Eng. 139 (4): 644–650. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000795.
Taiebat, M., and Y. F. Dafalias. 2008. “SANISAND: Simple anisotropic sand plasticity model.” Int. J. Numer. Anal. Methods Geomech. 32 (8): 915–948. https://doi.org/10.1002/nag.651.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2018. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.
Tsubakihara, Y., and H. Kishida. 1993. “Frictional behaviour between normally consolidated clay and steel by two direct shear type apparatuses.” Soils Found. 33 (2): 1–13. https://doi.org/10.3208/sandf1972.33.2_1.
Uesugi, M., and H. Kishida. 1986. “Frictional resistance at yield between dry sand and mild steel.” Soils Found. 26 (4): 139–149. https://doi.org/10.3208/sandf1972.26.4_139.
Uesugi, M., H. Kishida, and Y. Tsubakihara. 1988. “Behavior of sand particles in sand–steel friction.” Soils Found. 28 (1): 107–118. https://doi.org/10.3208/sandf1972.28.107.
Wang, S., W. Wu, Z.-Y. Yin, C. Peng, and X. He. 2018. “Modelling the time-dependent behaviour of granular material with hypoplasticity.” Int. J. Numer. Anal. Methods Geomech. 42 (12): 1331–1345. https://doi.org/10.1002/nag.2793.
Wernick, E. 1978. “Skin friction of cylindrical anchors in non-cohesive soils.” In Proc., Symp. on Soil Reinforcing and Stabilising Techniques, 201–219. Sydney, Australia: New South Wales Institute of Technology.
Yang, D., S. Niu, Y. Cai, W. Feng, and D. Zhang. 2021. “Analysis of shear characteristics of cohesive soil and rigid base: A case study of concrete base.” Geotech. Geol. Eng. 39 (1): 135–143. https://doi.org/10.1007/s10706-020-01478-0.
Yang, J., and Z.-Y. Yin. 2021. “Soil-structure interface modeling with the nonlinear incremental approach.” Int. J. Numer. Anal. Methods Geomech. 45 (10): 1381–1404. https://doi.org/10.1002/nag.3206.
Yasufuku, N., and H. Ochiai. 2005. Sand–steel interface friction related to soil crushability. Geotechnical special publication, 627–641. Reston, VA: ASCE.
Yasufuku, N., H. Ochiai, and T. Kaku. 2003. “Internal friction of sand along steel surface up to an interfacial critical state.” [In Japanese.] J Appl Mech 6 (Aug): 563–571. https://doi.org/10.2208/journalam.6.563.
Yavari, N., A. M. Tang, J. M. Pereira, and G. Hassen. 2016. “Effect of temperature on the shear strength of soils and the soil–structure interface.” Can. Geotech. J. 53 (7): 1186–1194. https://doi.org/10.1139/cgj-2015-0355.
Yin, K., A.-L. Fauchille, E. Di Filippo, P. Kotronis, and G. Sciarra. 2021. “A review of sand–clay mixture and soil–structure interface direct shear test.” Geotechnics 1 (2): 260–306. https://doi.org/10.3390/geotechnics1020014.
Yin, Z.-Y., and C. S. Chang. 2013. “Stress–dilatancy behavior for sand under loading and unloading conditions.” Int. J. Numer. Anal. Methods Geomech. 37 (8): 855–870. https://doi.org/10.1002/nag.1125.
Yin, Z.-Y., H.-W. Huang, and P.-Y. Hicher. 2016. “Elastoplastic modeling of sand–silt mixtures.” Soils Found. 56 (3): 520–532. https://doi.org/10.1016/j.sandf.2016.04.017.
Yin, Z.-Y., Z.-X. Wu, and P.-Y. Hicher. 2018. “Modeling monotonic and cyclic behavior of granular materials by exponential constitutive function.” J. Eng. Mech. 144 (4): 04018014. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001437.
Yoshimi, Y., and T. Kishida. 1981. “A ring torsion apparatus for evaluating friction between soil and metal surfaces.” Geotech. Test. J. 4 (4): 145–152. https://doi.org/10.1520/GTJ10783J.
Zhang, G., and J.-M. Zhang. 2006. “Large-scale apparatus for monotonic and cyclic soil–structure interface test.” Geotech. Test. J. 29 (5): 401–408. https://doi.org/10.1520/GTJ100225.
Zhou, W.-H., and Z.-Y. Yin. 2023. Practice of discrete element method in soil–structure interface modelling. Singapore: Springer Nature.
Information & Authors
Information
Published In
Copyright
© 2024 American Society of Civil Engineers.
History
Received: Nov 12, 2022
Accepted: Jan 19, 2024
Published online: Apr 24, 2024
Published in print: Jul 1, 2024
Discussion open until: Sep 24, 2024
ASCE Technical Topics:
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.
Cited by
- Dong Su, Dongzhan Wu, Meng Fan, Runqi Zhang, Jianhang Chen, Hao Xiong, Xiangsheng Chen, DEM investigation into the coupling effects of particle asphericity and interface roughness on shear behaviour of soil-structure interface, Particuology, 10.1016/j.partic.2024.11.019, 97, (39-57), (2025).
- Tuan A. Pham, Sadegh Nadimi, Melis Sutman, Critical Review of Physical-Mechanical Principles in Geostructure-Soil Interface Mechanics, Geotechnical and Geological Engineering, 10.1007/s10706-024-02954-7, 42, 8, (6757-6808), (2024).