Mixture Probability Models with Covariates: Applications in Estimating Risk of Hydroclimatic Extremes
Publication: Journal of Hydrologic Engineering
Volume 28, Issue 4
Abstract
Modeling of extreme events is important in many scientific fields, including environmental and civil engineering, and impacts and risk assessments. Among available methods, statistical models that allow estimating extremes’ frequency and intensity are regularly used in procedures to anticipate potential changes in extreme events. Extreme value theory provides a theoretical basis for statistical estimation of extreme events using frequency analysis. The challenge in modeling is knowing when to use the block maxima method or the peaks-over-threshold (POT) method. Each has its drawbacks. POT describes the main characteristics of the observed extreme series; the threshold selection is always challenging and might affect the accuracy of the simulated results and the credibility of changes in extreme values. To encompass this challenge, mixture models offer more flexibility to represent samples with nonhomogeneous data. This study presents the gamma generalized Pareto (GGP) mixture model for estimating risk occurrence of hydroclimatic extremes. The model was developed in its general form, whereas the observed hydrometeorological extreme events depend on multidimensional covariates. A maximum likelihood algorithm is proposed to estimate the parameters with a constraint on the shape parameter of the generalized Pareto (GP) distribution. A Monte Carlo (MC) simulation compared the proposed model with the classical POT approach, with a fixed threshold, and the annual maximum series of streamflow. The approach was applied using a daily hydrological data set from an observed station located in the Saint John River at Fort Kent (01AD002), New Brunswick, Canada. The results show a flexibility to model extremes for dependent or nonstationary time series and adequately describes the central part of the observed frequencies, as well as the tails.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
Hydrometric data used in this study are available on the official site of Environment Canada (Environnement et Changement Climatique Canada 2018). MATLAB codes were developed by the authors; direct requests for these codes can be made to the corresponding author.
Acknowledgments
We acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), individual grants of Professor Philippe Gachon (NSERC-RGPIN-2016-06436 and NSERC-RGPIN-2022-05032) and of Professor Salah El Adlouni (NSERC-RGPIN-2019-05746). We also acknowledge other financial supports from the Strategic Research Chair of the University of Québec in Montreal (UQAM) held by Professor Philippe Gachon, by UQAM under the scholarship for the exemption of additional tuition fees for foreign students, and by UQAM’s Faculty of Sciences under the faculty financial support program.
Author contributions: Nawres Yousfi contributed to the methodology, investigation, data curation, formal analysis, and writing of the original draft. Salaheddine El Adlouni contributed to the conceptualization, methodology, and writing of the original draft. Simon Michael Papalexiou contributed to the conceptualization, methodology, and writing review and editing. Philippe Gachon contributed to the conceptualization, methodology, and writing review and editing.
References
Abdi, B., O. Bozorg-Haddad, and X. Chu. 2021. “Uncertainty analysis of model inputs in riverine water temperature simulations.” Sci. Rep. 11 (1): 19908. https://doi.org/10.1038/s41598-021-99371-0.
AghaKouchak, A., and N. Nasrollahi. 2010. “Semi-parametric and parametric inference of extreme value models for rainfall data.” Water Resour. Manage. 24 (3): 1229–1249. https://doi.org/10.1007/s11269-009-9493-3.
Beck, H., N. Zimmermann, T. McVicar, N. Vergopolan, A. Berg, and E. F. Wood. 2018. “Present and future Köppen-Geiger climate classification maps at 1-km resolution.” Sci. Data 5: 180214. https://doi.org/10.1038/sdata.2018.214.
Behrens, C. N., H. F. Lopes, and D. Gamerman. 2004. “Bayesian analysis of extreme events with threshold estimation.” Stat. Model. 4 (3): 227–244. https://doi.org/10.1191/1471082X04st075oa.
Bickel, P. J., and D. A. Freedman. 1981. “Some asymptotic theory for the bootstrap.” Ann. Stat. 9 (6): 1196–1217. https://doi.org/10.1214/aos/1176345637.
Blöschl, G., T. Nester, J. Komma, J. Parajka, and R. A. Perdigão. 2013. “The June 2013 flood in the Upper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods.” Hydrol. Earth Syst. Sci. 17 (12): 5197–5212. https://doi.org/10.5194/hess-17-5197-2013.
Boisvert, J., N. El-Jabi, S. E. El Adlouni, D. Caissie, and A. N. Thiombiano. 2017. “New Brunswick hydrometric network analysis and rationalization.” Can. J. Civ. Eng. 44 (10): 829–837. https://doi.org/10.1139/cjce-2016-0487.
Carreau, J., and Y. Bengio. 2009. “A hybrid Pareto model for asymmetric fat-tailed data: The univariate case.” Extremes 12 (5): 53–76. https://doi.org/10.1007/s10687-008-0068-0.
Cassella, J. P., S. Cassella, and I. Smith. 2002. “Synergistic antifungal activity of tea tree (Melaleuca alternifolia) and lavender (Lavandula angustifolia) essential oils against dermatophyte infection.” Int. J. Aromather. 12 (1): 2–15. https://doi.org/10.1054/ijar.2001.0127.
Chavez-Demoulin, V., and A. C. Davison. 2005. “Generalized additive modelling of sample extremes.” J. R. Stat. Soc. C 54 (1): 207–222. https://doi.org/10.1111/j.1467-9876.2005.00479.x.
Coles, S. 2001. “Introduction.” In An introduction to statistical modeling of extreme values, 1–17. Berlin: Springer.
Coles, S. G., and J. A. Tawn. 1991. “Modelling extreme multivariate events.” J. R. Stat. Soc. B 53 (2): 377–392. https://doi.org/10.1111/j.2517-6161.1991.tb01830.x.
Coles, S. G., and J. A. Tawn. 1994. “Statistical methods for multivariate extremes: An application to structural design.” J. R. Stat. Soc. C 43 (1): 1–31. https://doi.org/10.2307/2986112.
Davison, A. C., and N. I. Ramesh. 2000. “Local likelihood smoothing of sample extremes.” J. R. Stat. Soc. B 62 (1): 191–208. https://doi.org/10.1111/1467-9868.00228.
Davison, A. C., and R. L. Smith. 1990. “Models for exceedances over high thresholds.” J. R. Stat. Soc. B 52 (3): 393–442. https://doi.org/10.1111/j.2517-6161.1990.tb01796.x.
de Melo Mendes, B. V., and H. F. Lopes. 2004. “Data driven estimates for mixtures.” Comput. Stat. Data Anal. 47 (3): 583–598. https://doi.org/10.1016/j.csda.2003.12.006.
Eastoe, E. F., and J. A. Tawn. 2009. “Modelling non-stationary extremes with application to surface level ozone.” J. R. Stat. Soc. C 58 (1): 25–45. https://doi.org/10.1111/j.1467-9876.2008.00638.x.
El Adlouni, S., T. B. M. J. Ouarda, X. Zhang, R. Roy, and B. Bobée. 2007. “Generalized maximum likelihood estimators for the nonstationary generalized extreme value model.” Water Resour. Res. 43: 1–13.
El Jabi, N., and D. Caissie. 2018. “Characterization of natural and environmental flows in New Brunswick, Canada.” River Res. Appl. 35 (1): 14–24. https://doi.org/10.1002/rra.3387.
Environnement et Changement Climatique Canada. 2018. “Archives nationales des données hydrologiques: HYDAT.” Accessed March 7, 2018. https://www.canada.ca/fr/environnement-changement-climatique/services/eau-apercu/volume/surveillance/releves/produits-donnees-services/archives-nationales-hydat.html.
Evin, G., J. Merleau, and L. Perreault. 2011. “Two-component mixtures of normal gamma and Gumbel distributions for hydrological applications.” Water Resour. Res. 47 (5): W08525. https://doi.org/10.1029/2010WR010266.
Ferro, C. A., and J. Segers. 2003. “Inference for clusters of extreme values.” J. R. Stat. Soc. B 65 (2): 545–556. https://doi.org/10.1111/1467-9868.00401.
Filipova, V., D. Lawrence, and T. Skaugen. 2019. “A stochastic event-based approach for flood estimation in catchments with mixture rainfall and snowmelt flood regimes.” Nat. Hazards Earth Syst. Sci. J. 19 (Apr): 1–18. https://doi.org/10.5194/nhess-19-1-2019.
Fischer, S., and A. Schumann. 2016. “Robust flood statistics: Comparison of peak over threshold approaches based on monthly maxima and TL-moments.” Hydrol. Sci. J. 61 (3): 457–470. https://doi.org/10.1080/02626667.2015.1054391.
Fischer, S., A. Schumann, and P. Bühler. 2019. “Timescale-based flood typing to estimate temporal changes in flood frequencies.” Hydrol. Sci. J. 64 (15): 1867–1892. https://doi.org/10.1080/02626667.2019.1679376.
Fischer, S., A. Schumann, and P. Bühler. 2021. “A statistics-based automated flood event separation.” J. Hydrol. X 10 (2021): 100070. https://doi.org/10.1016/j.hydroa.2020.100070.
Fisher, R. A., and L. H. C. Tippett. 1928. “Limiting forms of the frequency distribution of the largest or smallest member of a sample.” Math. Proc. Cambridge Philos. Soc. 24 (2): 180–190. https://doi.org/10.1017/S0305004100015681.
Frigessi, A., O. Haug, and H. Rue. 2002. “A dynamic mixture model for unsupervised tail estimation without threshold selection.” Extreme 5 (3): 219–235. https://doi.org/10.1023/A:1024072610684.
Garrido, L. L., and E. Cepeda Cuervo. 2012. “Mixture of distributions in the biparametric exponential family: A Bayesian approach.” Commun. Stat.- Simul. Comput. 41 (3): 355–375. https://doi.org/10.1080/03610918.2011.592245.
Hall, P., and N. Tajvidi. 2000. “Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data.” Stat. Sci. 15 (2): 153–167. https://doi.org/10.1214/ss/1009212755.
Heffernan, J. E., and J. A. Tawn. 2004. “A conditional approach for multivariate extreme values (with discussion).” J. R. Stat. Soc. B 66 (3): 497–546. https://doi.org/10.1111/j.1467-9868.2004.02050.x.
IPCC (Intergovernmental Panel on Climate Change). 2021. “Summary for policymakers.” In Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
Jenkinson, A. F. 1955. “The frequency distribution of the annual maximum (or minimum) of meteorological elements.” Q. J. R. Meteorol. Soc. 81 (5): 158–171. https://doi.org/10.1002/qj.49708134804.
Kiran, K. G., and V. V. Srinivas. 2021. “A Mahalanobis distance-based automatic threshold selection method for peaks over threshold model.” Water Resour. Res. 57 (1): e2020WR027534. https://doi.org/10.1029/2020WR027534.
Kundzewicz, Z. W. 2019. Changes in flood risk in Europe. London: CRC Press.
Lang, M., T. B. M. J. Ouarda, and B. Bobée. 1999. “Towards operational guidelines for over-threshold modeling.” J. Hydrol. 225 (Jun): 103–117. https://doi.org/10.1016/S0022-1694(99)00167-5.
MacDonald, A. 2012. “Extreme value mixture modeling with medical and industrial applications.” Ph.D. thesis, Dept. of Mathematics and Statistics, Univ. of Canterbury.
Mangini, W., A. Viglione, J. Hall, Y. Hundecha, S. Ceola, A. Montanari, M. Rogger, J. L. Salinas, I. Borzi, and J. Parajka. 2018. “Detection of trends in magnitude and frequency of flood peaks across Europe.” Hydrol. Sci. J. 63 (4): 493–512. https://doi.org/10.1080/02626667.2018.1444766.
Martins, E. S., and J. R. Stedinger. 2001. “Historical information in a generalized maximum likelihood framework with partial duration and annual maximum series.” Water Resour. Res. 37 (10): 2559–2567. https://doi.org/10.1029/2000WR000009.
McNeil, A. J., and R. Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach.” J. Empirical Finance 7 (3–4): 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8.
Merz, R., and G. Blöschl. 2003. “A process typology of regional floods.” Water Resour. Res. 39 (Dec): 12. https://doi.org/10.1029/2002WR001952.
Mo, C., Y. Ruan, J. He, J. L. Jin, P. Liu, and G. Sun. 2019. “Frequency analysis of precipitation extremes under climate change.” Int. J. Climatol. 39 (3): 1373–1387. https://doi.org/10.1002/joc.5887.
Nascimento, F. X., C. Brígido, B. R. Glick, S. Oliveira, and L. Alho. 2012. “Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints.” Lett. Appl. Microbiol. 55 (1): 15–21. https://doi.org/10.1111/j.1472-765X.2012.03251.x.
Newton, B., and B. C. Burrell. 2016. “The April–May 2008 flood event in the Saint John River Basin: Causes, assessment and damages.” Canadian Water Resour. J. /Revue Canadienne des Ressources Hydriques 41 (1–2): 118–128. https://doi.org/10.1080/07011784.2015.1009950.
Novo, P. G., and Y. Kyozuka. 2019. “Analysis of turbulence and extreme current velocity values in a tidal channel.” J. Mar. Sci. Technol. 24 (5): 659–672. https://doi.org/10.1007/s00773-018-0601-z.
Nyaupane, N., S. Bahandari, M. M. Rahaman, K. Wagner, A. Kalra, S. Ahmed, and R. Gupta. 2018. “Flood frequency analysis using generalized extreme value distribution and floodplain mapping for Hurricane Harvey in Buffalo Bayou.” In Proc., World Environmental and Water Resources Congress 2018: Watershed Management, Irrigation and Drainage, and Water Resources Planning and Management, 364–375. Reston, VA: ASCE.
Papalexiou, S. M., D. Koutsoyiannis, and C. Makropoulos. 2013. “How extreme is extreme? An assessment of daily rainfall distribution tails.” Hydrol. Earth Syst. Sci. 17 (Jun): 851–862. https://doi.org/10.5194/hess-17-851-2013.
Pauli, F., and S. Coles. 2001. “Penalized likelihood inference in extreme value analyses.” J. Appl. Stat. 28 (5): 547–560. https://doi.org/10.1080/02664760120047889.
Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. “Updated world map of the Köppen-Geiger climate classification.” Hydrol. Earth Syst. Sci. Discuss. 11 (5): 1633–1644. https://doi.org/10.5194/hess-11-1633-2007.
Pickands, J. 1975. “Statistical inference using extreme order statistics.” Ann. Stat. 3 (1): 119–131. https://doi.org/10.1214/aos/1176343003.
Salas, J. D., and J. Obeysekera. 2019. “Probability distribution and risk of the first occurrence of extreme hydrologic events.” J. Hydrol. Eng. 24 (10): 04019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001809.
Scarrott, C., and A. MacDonald. 2012. “A review of extreme value threshold estimation and uncertainty quantification.” REVSTAT-Stat. J. 10 (1): 33–60. https://doi.org/10.57805/revstat.v10i1.110.
Shinyie, W. L., N. Ismail, and A. A. Jemain. 2013. “Semi-parametric estimation for selecting optimal threshold of extreme rainfall events.” Water Resour. Manage. 27 (5): 2325–2352. https://doi.org/10.1007/s11269-013-0290-7.
Sikorska, A. E., D. Viviroli, and J. Seibert. 2015. “Flood-type classification in mountainous catchments using crisp and fuzzy decision trees.” Water Resour. Res. 51 (10): 7959–7976. https://doi.org/10.1002/2015WR017326.
Smith, R. L. 1987. “Estimating tails of probability distributions.” Ann. Stat. 15 (3): 1174–1207. https://doi.org/10.1214/aos/1176350499.
Solari, S., and M. A. Losada. 2012. “A unified statistical model for hydrological variables including the selection of threshold for the peak over threshold method.” Water Resour. Res. 48 (5): W10541. https://doi.org/10.1029/2011WR011475.
Tancredi, A., C. Anderson, and A. O’Hagan. 2006. “Accounting for threshold uncertainty in extreme value estimation.” Extremes 9 (2): 87–106. https://doi.org/10.1007/s10687-006-0009-8.
Tarasova, L., R. Merz, A. Kiss, S. Basso, G. Blöschl, B. Merz, and L. Wietzke. 2019. “Causative classification of river flood events.” Wiley Interdiscip. Rev.: Water 6 (4): e1353. https://doi.org/10.1002/wat2.1353.
Thiombiano, A. N., S. El Adlouni, A. St-Hilaire, T. B. Ouarda, and N. El-Jabi. 2017. “Nonstationary frequency analysis of extreme daily precipitation amounts in southeastern Canada using a peaks-over-threshold approach.” Theor. Appl. Climatol. 129 (1): 413–426. https://doi.org/10.1007/s00704-016-1789-7.
Vasiliades, L., P. Galiatsatou, and A. Loukas. 2015. “Nonstationary frequency analysis of annual maximum rainfall using climate covariates.” Water Resour. Manage. 29 (Jun): 339–358. https://doi.org/10.1007/s11269-014-0761-5.
Viglione, A., R. Merz, and G. Blöschl. 2009. “On the role of the runoff coefficient in the mapping of rainfall to flood return periods.” Hydrol. Earth Syst. Sci. 13 (5): 577–593. https://doi.org/10.5194/hess-13-577-2009.
Volpi, E., A. Fiori, S. Grimaldi, F. Lombardo, and D. Koutsoyiannis. 2019. “Save hydrological observations! Return period estimation without data decimation.” J. Hydrol. 571 (Apr): 782–792. https://doi.org/10.1016/j.jhydrol.2019.02.017.
Yang, L., C. L. E. Franzke, and Z. Fu. 2019. “Power-law behaviour of hourly precipitation intensity and dry spell duration over the United States.” Int. J. Climatol. 39 (5): 1–16. https://doi.org/10.1002/joc.6343.
Yee, T. W., and A. G. Stephenson. 2007. “Vector generalized linear and additive extreme value models.” Extremes 10 (1): 1–19. https://doi.org/10.1007/s10687-007-0032-4.
Yilmaz, A. G., M. A. Imteaz, and B. J. C. Perera. 2017. “Investigation of non-stationarity of extreme rainfalls and spatial variability of rainfall intensity–frequency–duration relationships: A case study of Victoria, Australia.” Int. J. Climatol. 37 (5): 430–442. https://doi.org/10.1002/joc.4716.
Yousfi, N., and S. E. El Adlouni. 2016. “Regularized Bayesian estimation for GEV-B-splines model.” Stochastic Environ. Res. Risk Assess. 31 (2): 535–550. https://doi.org/10.1007/s00477-016-1295-6.
Information & Authors
Information
Published In
Copyright
© 2023 American Society of Civil Engineers.
History
Received: May 20, 2022
Accepted: Dec 28, 2022
Published online: Feb 14, 2023
Published in print: Apr 1, 2023
Discussion open until: Jul 14, 2023
ASCE Technical Topics:
- Disaster risk management
- Disasters and hazards
- Engineering fundamentals
- Flow (fluid dynamics)
- Fluid dynamics
- Fluid mechanics
- Gamma function
- Hydrologic engineering
- Hydrologic models
- Materials characterization
- Materials engineering
- Mathematical functions
- Mathematics
- Mixtures
- Models (by type)
- Parameters (statistics)
- Risk management
- Statistics
- Streamflow
- Water and water resources
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.