Application of Least-Squares Variance Component Estimation to GPS Observables
Publication: Journal of Surveying Engineering
Volume 135, Issue 4
Abstract
This contribution can be seen as an attempt to apply a rigorous method for variance components in a straightforward manner directly to GPS observables. Least-squares variance component estimation is adopted to assess the noise characteristics of GPS observables using the geometry-free observation model. The method can be applied to GPS observables or GNSS observables in general, even when the navigation message is not available. A realistic stochastic model of GPS observables takes into account the individual variances of different observation types, the satellite elevation dependence of GPS observables precision, the correlation between different observation types, and the time correlation of the observables. The mathematical formulation of all such issues is presented. The numerical evidence, obtained from real GPS data, consequently concludes that these are important issues in order to properly construct the covariance matrix of the GPS observables. Satellite elevation dependence of variance is found to be significant, for which a comparison is made with the existing elevation-dependent models. The results also indicate that the correlation between observation types is significant. A positive correlation of 0.8 is still observed between the phase observations on L1 and L2.
Get full access to this article
View all available purchase options and get full access to this article.
Acknowledgments
The writers would like to acknowledge Professor T. Soler, the editor-in-chief, and three anonymous reviewers for their useful comments, which significantly improved the quality and presentation of this paper. The Australian Research Council Federation Fellowship support of the second writer (project number FF0883188) is greatly appreciated.
References
Amiri-Simkooei, A. R. (2007). “Least-squares variance component estimation: Theory and GPS applications.” Ph.D. thesis, Delft Univ. of Technology, Delft, The Netherlands.
Amiri-Simkooei, A. R. (2009). “Noise in multivariate GPS position time-series.” J. Geodesy, Berlin, 83, 175–187.
Amiri-Simkooei, A. R., and Tiberius, C. C. J. M. (2007). “Assessing receiver noise using GPS short baseline time series.” GPS Solutions, 11(1), 21–35.
Amiri-Simkooei, A. R., Tiberius, C. C. J. M., and Teunissen, P. J. G. (2006). “Noise characteristics in high precision GPS positioning.” P. Xu, J. Liu, A. Dermanis, eds., Proc., 6th Hotine-Marussi Symp. of Theoretical and Computational Geodesy, Springer, Berlin, 280–286.
Amiri-Simkooei, A. R., Tiberius, C. C. J. M., and Teunissen, P. J. G. (2007). “Assessment of noise in GPS coordinate time series: Methodology and results.” J. Geophys. Res., 112, B07413.
Bischoff, W., Heck, B., Howind, J., and Teusch, A. (2005). “A procedure for testing the assumption of homoscedasticity in least squares residuals: A case study of GPS carrier-phase observations.” J. Geodesy, Berlin, 78, 397–404.
Bischoff, W., Heck, B., Howind, J., and Teusch, A. (2006). “A procedure for estimating the variance function of linear models and for checking the appropriateness of estimated variances: A case study of GPS carrier-phase observations.” J. Geodesy, Berlin, 79, 694–704.
Bona, P., and Tiberius, C. C. J. M. (2000). “An experimental comparison of noise characteristics of seven high-end dual frequency GPS receiver-sets.” Proc., IEEE PLANS2000, Institute of Navigation (ION), Manassas, Va., 237–244.
Braasch, M. S., and VanDierendonck, A. J. (1999). “GPS receiver architectures and measurements.” Proc. IEEE, 87(1), 48–64.
Brunner, F. K., Hartinger, H., and Troyer, L. (1999). “GPS signal diffraction modelling: The stochastic model SIGMA- model.” J. Geodesy, Berlin, 73, 259–267.
Eueler, H. J., and Goad, C. (1991). “On optimal filtering of GPS dual frequency observations without using orbit information.” Bull. Geod., 65, 130–143.
Fontana R. D., Cheung W., Stansell T. (2001) “The modernized L2 civil signal: Leaping forward in the 21st century.” Proc., GPS World, 28–34.
Hartinger, H., and Brunner, F. K. (1999). “Variances of GPS phase observations: The SIGMA- model.” GPS Solut., 2(4), 35–43.
de Jong, C. (1999). “A modular approach to precise GPS positioning.” GPS Solut., 2(4), 52–56.
Koch, K. R. (1986). “Maximum likelihood estimate of variance components.” Bull. Geod., 60, 329–338.
Koch, K. R. (1999). Parameter estimation and hypothesis testing in linear models, Springer, Berlin.
Leandro, R. F., Thirumurthi, T., Sükeova, L., Langley, R. B., and Santos, M. C. (2008). “Analysis of GPS L2C signal quality and its impact on PPP performance.” Proc., ION NTM 2008, Institute of Navigation (ION), San Diego, 1020–1031.
Odijk D. (2008). “GNSS Solutions: What does geometry-based and geometry-free mean in the context of GNSS?” Inside GNSS, March/April, 22–24.
Parkinson, B. W., and Spilker, J. J. (1996). Global positioning system: Theory and applications, progress in astronautics and aerodynamics, Vol. 163–164, American Institute of Astronautics, Washington, D.C.
Rao, C. R. (1971). “Estimation of variance and covariance components—MINQUE theory.” J. Multivariate Anal., 1, 257–275.
Satirapod, C., Wang, J., and Rizos, C. (2002). “A simplified MINQUE procedure for the estimation of variance-covariance components of GPS observables.” Surv. Rev., 36(286), 582–590.
Schaffrin, B. (1983). Varianz-kovarianz-komponenten-schätzung bei der ausgleichung heterogener wiederholungsmessungen C282, Deutsche Geodätische Kommission, Munchen, Germany (in German).
Schön, S., and Brunner, F. K. (2008). “A proposal for modelling physical correlations of GPS phase observations.” J. Geodesy, Berlin, 82(10), 601–612.
Sjöberg, L. E. (1983). “Unbiased estimation of variance-covariance components in condition adjustment with unknowns—A MINQUE approach.” Zeitschrift für Vermessungswesen, 108(9), 382–387.
Teunissen, P. J. G. (1993). “Least squares estimation of the integer GPS ambiguities.” Proc., IAG General Meeting, Series No. 6, Delft Geodetic Computing Centre.
Teunissen, P. J. G. (1995). “The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation.” J. Geodesy, Berlin, 70(1–2), 65–83.
Teunissen, P. J. G. (1997a). “A canonical theory for short GPS baselines (Part I).” J. Geodesy, Berlin, 71(6), 320–336.
Teunissen, P. J. G. (1997b). “A canonical theory for short GPS baselines (Part II).” J. Geodesy, Berlin, 71(7), 389–401.
Teunissen, P. J. G. (1997c). “A canonical theory for short GPS baselines (Part III).” J. Geodesy, Berlin, 71(8), 486–501.
Teunissen, P. J. G. (1997d). “A canonical theory for short GPS baselines (Part IV).” J. Geodesy, Berlin, 71(9), 513–525.
Teunissen, P. J. G. (1997e). “GPS ambiguity resolution: Impact of time correlation, cross correlation and satellite elevation dependency.” Stud. Geophys. Geod., 41, 181–195.
Teunissen, P. J. G. (2000). “Testing theory: An introduction.” Delft Univ. Press, The Netherlands, ⟨http://www.vssd.nl⟩ (Sept. 2, 2009).
Teunissen, P. J. G., and Amiri-Simkooei, A. R. (2006). “Variance component estimation by the method of least-squares.” Proc., 6th Hotine-Marussi Symp. of Theoretical and Computational Geodesy, IAG Symposia, Vol. 132, P. Xu, J. Liu, and A. Dermanis, eds., Springer, Berlin, 273–279.
Teunissen, P. J. G., and Amiri-Simkooei, A. R. (2008). “Least-squares variance component estimation.” J. Geodesy, Berlin, 82(2), 65–82.
Teunissen, P. J. G. and Kleusberg, A., and (1998). “Section 7: Quality control and GPS.” GPS for geodesy, P. J. G. Teunissen and A. Kleusberg, eds., Springer, Berlin.
Teunissen, P. J. G., Jonkman, N. F., and Tiberius, C. C. J. M. (1998). “Weighting GPS dual frequency observations: Bearing the cross of cross-correlation.” GPS Solut., 2(2), 28–37.
Tiberius C. (2001). “A univariate analysis of the impact of time correlation.” Boll. Geod. Sci. Affini., 60(2001), 33–48.
Tiberius, C. C. J. M., and Kenselaar, F. (2000). “Estimation of the stochastic model for GPS code and phase observables.” Surv. Rev., 35(277), 441–454.
Tiberius, C. C. J. M., and Kenselaar, F. (2003). “Variance component estimation and precise GPS positioning: Case study.” J. Surv. Eng., 129(1), 11–18.
Wang, J., Stewart, M. P., and Tsakiri, M. (1998). “Stochastic modeling for static GPS baseline data processing.” J. Surv. Eng., 124(4), 171–181.
Wang, J., Satirapod, C., and Rizos, C. (2002). “Stochastic assessment of GPS carrier phase measurements for precise static relative positioning.” J. Geodesy, Berlin, 76, 95–104.
Information & Authors
Information
Published In
Copyright
© 2009 ASCE.
History
Received: Jan 10, 2008
Accepted: May 11, 2009
Published online: Oct 15, 2009
Published in print: Nov 2009
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.