Prediction of Punching Shear Capacity for Fiber-Reinforced Concrete Slabs Using Neuro-Nomographs Constructed by Machine Learning
Publication: Journal of Structural Engineering
Volume 147, Issue 6
Abstract
Punching shear capacity is an important parameter in designing structural elements. Accurate estimation of punching shear capacity typically requires rigorous calculation schemes. Especially for fiber-reinforced slabs, traditional design methods may not be sufficient to predict the interaction between different influencing parameters affecting punching shear capacity for such slabs. In this study, multiple state-of-the-art machine learning (ML) algorithms were utilized, namely, regression learner, ensemble tree (bagged and boosted), support vector machine (SVM), regression decision tree, Gaussian process regression (GPR), and artificial neural networks (ANN). A comprehensive evaluation of the six ML techniques was conducted with respect to model accuracy and computational efficiency. The results demonstrated that the ANN-based algorithms outperformed other ML approaches based on the values of root mean square error (RMSE), mean absolute error (MAE), and correlation coefficient (). Furthermore, the analysis of the results has shown that the slab effective depth has the most significant effect on the predicted punching shear, followed by the width of applied load and concrete compressive strength. Python coding (with the assist of Pynomo software) was utilized to create nomographs integrated with weights resulting from the neural network model. Such neuro-nomographs can be used to simulate the results of the developed ANN model. Moreover, the values of tested punching shear capacities over predicted values () using the neuro-nomograph have shown mean and coefficient of variation (COV) values of 1.00 and 0.05, respectively, indicating remarkably minor scatter in the prediction.
Get full access to this article
View all available purchase options and get full access to this article.
Data Availability Statement
All data, models, and code generated or used during the study appear in the published article.
References
Abdel-Rahman, A. M., N. Z. Hassan, and A. M. Soliman. 2018. “Punching shear behavior of reinforced concrete slabs using steel fibers in the mix.” HBRC J. 14 (3): 272–281. https://doi.org/10.1016/j.hbrcj.2016.11.001.
ACI (American Concrete Institute). 2008. Building code requirements for structural concrete and commentary. ACI 318-08. Farmington Hills, MI: ACI.
Alexander, S. D. B., and S. H. Simmonds. 1992. “Punching shear tests of concrete slab-column joints containing fiber reinforcement.” Struct. J. 89 (4): 425–432.
Alkroosh, I., and H. Ammash. 2015. “Soft computing for modeling punching shear of reinforced concrete flat slabs.” Ain Shams Eng. J. 6 (2): 439–448. https://doi.org/10.1016/j.asej.2014.12.001.
Baarimah, A. O., and S. S. Mohsin. 2017. “Behaviour of reinforced concrete slabs with steel fibers.” In Vol. 271 of Proc., IOP Conf. Series: Materials Science and Engineering, 012099. London: Institute of Physics.
Breiman, L. 1996. “Bagging predictors.” Mach. Learn. 24 (2): 123–140.
Burhan, A. M., M. R. Altaie, and O. K. Al-Kubaisi. 2018. “Determining the causes of punching shear in reinforced slabs using fishbone diagram.” Civ. Eng. J. 4 (11): 2642–2651. https://doi.org/10.28991/cej-03091188.
CEN (European Committee for Standardization). 2004. Design of steel structures, part 1–2. Eurocode 2. Brussels, Belgium: CEN.
Cheng, M. Y., and G. J. Parra-Montesinos. 2010. “Evaluation of steel fiber reinforcement for punching shear resistance in slab-column connections—Part I: Monotonically increased load.” ACI Struct. J. 107 (1): 101–109.
Cortes, C., and V. Vapnik. 1995. “Support vector networks.” Mach. Learn. 20 (3): 273–295.
Doerfler, R. 2009. “On jargon-the lost art of nomography.” UMAP J. 30 (4): 457–493.
Douglas, J., and L. Danciu. 2020. “Nomogram to help explain probabilistic seismic hazard.” J. Seismol. 24 (1): 221–228. https://doi.org/10.1007/s10950-019-09885-4.
Evesham, H. A. 1986. “Origins and development of nomography.” Ann. Hist. Comput. 8 (4): 324–333. https://doi.org/10.1109/MAHC.1986.10059.
Goetzke-Pala, A., A. Hoła, and Ł. Sadowski. 2018. “A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks.” Archiv. Civ. Mech. Eng. 18 (4): 1729–1742. https://doi.org/10.1016/j.acme.2018.07.004.
Hanai, J. B., and K. M. A. Holanda. 2008. “Similarities between punching and shear strength of steel fiber reinforced concrete (SFRC) slabs and beams.” RIEM-IBRACON Struct. Mater. J. 1 (1): 1–16.
Harajli, M. H., D. Maalouf, and H. Khatib. 1995. “Effect of fibers on the punching shear strength of slab-column connections.” Cem. Concr. Compos. 17 (2): 161–170. https://doi.org/10.1016/0958-9465(94)00031-S.
Higashiyama, H., A. Ota, and M. Mizukoshi. 2011. “Design equation for punching shear capacity of SFRC slabs.” Int. J. Concr. Struct. Mater. 5 (1): 35–42. https://doi.org/10.4334/IJCSM.2011.5.1.035.
Hoang, N. D., D. T. Vu, X. L. Tran, and V. D. Tran. 2017. “Modeling punching shear capacity of fiber-reinforced polymer concrete slabs: A comparative study of instance-based and neural network learning.” In Applied computational intelligence and soft computing. London: Hindawi.
Jumaa, G. B., and A. R. Yousif. 2018. “Predicting shear capacity of FRP-reinforced concrete beams without stirrups by artificial neural networks, gene expression programming, and regression analysis.” In Advances in civil engineering, 2018. London: Hindawi.
Kashkarov, S., Z. Li, and V. Molkov. 2020. “Blast wave from a hydrogen tank rupture in a fire in the open: Hazard distance nomograms.” Int. J. Hydrogen Energy 45 (3): 2429–2446. https://doi.org/10.1016/j.ijhydene.2019.11.084.
Khaloo, A. R., and M. Afshari. 2005. “Flexural behaviour of small steel fibre reinforced concrete slabs.” Cem. Concr. Compos. 27 (1): 141–149. https://doi.org/10.1016/j.cemconcomp.2004.03.004.
Kim, H. G. 2008. “Effects of fiber aspect ratio evaluated by elastic analysis in discontinuous composites.” J. Mech. Sci. Technol. 22 (3): 411. https://doi.org/10.1007/s12206-007-1208-1.
Maya, L. F., M. F. Ruiz, A. Muttoni, and S. J. Foster. 2012. “Punching shear strength of steel fibre reinforced concrete slabs.” Eng. Struct. 40 (Jul): 83–94. https://doi.org/10.1016/j.engstruct.2012.02.009.
McHarg, P. J., W. D. Cook, D. Mitchell, and Y. S. Yoon. 2000. “Benefits of concentrated slab reinforcement and steel fibers on performance of slab-column connections.” ACI Struct. J. 97 (2): 225–234.
Mendoza, F. C., A. F. Gisbert, A. G. Izquierdo, and M. D. Bovea. 2009. “Safety factor nomograms for homogeneous earth dams less than ten meters high.” Eng. Geol. 105 (3–4): 231–238. https://doi.org/10.1016/j.enggeo.2009.01.001.
Metwally, I. M. 2013. “Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars.” HBRC J. 9 (2): 125–133. https://doi.org/10.1016/j.hbrcj.2013.05.009.
Micallef, K., J. Sagaseta, M. Fernández Ruiz, and A. Muttoni. 2014. “Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading.” Int. J. Impact Eng. 71 (Sep): 17–33. https://doi.org/10.1016/j.ijimpeng.2014.04.003.
Musse, T. H., E. Liberati, L. Trautwein, R. Gomes, and G. N. Guimarães. 2018. “Punching shear in concrete reinforced flat slabs with steel fibers and shear reinforcement.” Rev. IBRACON Estruturas e Materiais 11 (5): 1110–1121. https://doi.org/10.1590/s1983-41952018000500011.
Muttoni, A. 2008. “Punching shear strength of reinforced concrete slabs without transverse reinforcement.” ACI Struct. J. 105 (4): 440–450.
Nam, D. H., S. H. Lee, and B. S. Kim. 2019. “Development of Nomogram for debris flow forecasting based on critical accumulated rainfall in South Korea.” Water 11 (10): 2181. https://doi.org/10.3390/w11102181.
Narayanan, R., and I. Y. S. Darwish. 1987. “Punching shear tests on steel-fibre-reinforced micro-concrete slabs.” Mag. Concr. Res. 39 (138): 42–50. https://doi.org/10.1680/macr.1987.39.138.42.
Nguyen-Minh, L., M. Rovňák, and T. Tran-Quoc. 2012. “Punching shear capacity of interior SFRC slab-column connections.” J. Struct. Eng. 138 (5): 613–624. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000497.
Nigro, E., A. Bilotta, G. Cefarelli, G. Manfredi, and E. Cosenza. 2012. “Performance under fire situations of concrete members reinforced with FRP rods: Bond models and design nomograms.” J. Compos. Constr. 16 (4): 395–406. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000279.
Omar, M., A. Shanableh, A. Basma, and S. Barakat. 2003. “Compaction characteristics of granular soils in United Arab Emirates.” Geotech. Geol. Eng. 21 (3): 283–295. https://doi.org/10.1023/A:1024927719730.
Omar, M., A. Shanableh, K. Hamad, A. Tahmaz, M. G. Arab, and Z. Al-Sadoon. 2019. “Nomographs for predicting allowable bearing capacity and elastic settlement of shallow foundation on granular soil.” Arabian J. Geosci. 12 (15): 485. https://doi.org/10.1007/s12517-019-4644-1.
Rafiei, M. H., and H. Adeli. 2017. “A novel machine learning-based algorithm to detect damage in high-rise building structures.” Struct. Des. Tall Special Build. 26 (18): e1400. https://doi.org/10.1002/tal.1400.
Rasmussen, C. E., and C. K. Williams. 2006. Vol. 1 of Gaussian processes for machine learning. Cambridge, MA: MIT Press.
Ruiz, M., Y. Mirzaei, and A. Muttoni. 2013. “Post-punching behavior of flat slabs.” ACI Struct. J. 110 (5): 801–812.
Ryu, S. R., and D. J. Lee. 2001. “Effects of fiber aspect ratio, fiber content, and bonding agent on tensile and tear properties of short-fiber reinforced rubber.” KSME Int. J. 15 (1): 35–43. https://doi.org/10.1007/BF03184796.
Sadowski, Ł., J. Hoła, S. Czarnecki, and D. Wang. 2018. “Pull-off adhesion prediction of variable thick overlay to the substrate.” Autom. Constr. 85 (Jan): 10–23. https://doi.org/10.1016/j.autcon.2017.10.001.
Said, A. M., Y. Tian, and A. Hussein. 2012. “Evaluating punching shear strength of slabs without shear reinforcement using artificial neural networks.” In Proc., ACI Special Publication on Reinforced Concrete, 1–18. Farmington Hills, MI: American Concrete Institute.
Salehi, H., and R. Burgueno. 2018. “Emerging artificial intelligence methods in structural engineering.” Eng. Struct. 171 (Sep): 170–189. https://doi.org/10.1016/j.engstruct.2018.05.084.
Shaaban, A. M., and H. Gesund. 1994. “Punching shear strength of steel fiber reinforced concrete flat plates.” Struct. J. 91 (4): 406–414.
Shah, A. A., and Y. Ribakov. 2011. “Recent trends in steel fibered high-strength concrete.” Mater. Des. 32 (8–9): 4122–4151. https://doi.org/10.1016/j.matdes.2011.03.030.
Shahin, M. A., M. B. Jaksa, and H. R. Maier. 2002. “Artificial neural network based settlement prediction formula for shallow foundations on granular soils.” Aust. Geomech. J. 37 (4): 45.
Sil, G., S. Nama, A. Maji, and A. K. Maurya. 2020. “Modeling 85th percentile speed using spatially evaluated free-flow vehicles for consistency-based geometric design.” J. Transp. Eng., Part A: Syst. 146 (2): 04019060. https://doi.org/10.1061/JTEPBS.0000286.
Suter, R., and L. Moreillon. 2010. “Punching shear strength of high-performance fiber reinforced concrete slabs.” In Proc., 3rd FIB Int. Congress. Lausanne, Switzerland: International Federation for Structural Concrete.
Swamy, R. N., and S. A. R. Ali. 1982. “Punching shear behavior of reinforced slab-column connections made with steel fiber concrete.” J. Proc. 79 (5): 392–406.
Taffese, W. Z., and E. Sistonen. 2017. “Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions.” Autom. Constr. 77 (May): 1–14. https://doi.org/10.1016/j.autcon.2017.01.016.
Theodorakopoulos, D. D., and R. N. Swamy. 2002. “Ultimate punching shear strength analysis of slab–column connections.” Cem. Concr. Compos. 24 (6): 509–521. https://doi.org/10.1016/S0958-9465(01)00067-1.
Tian, W., L. Qi, J. Zhou, and J. Guan. 2014. “Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites.” Comput. Mater. Sci 89 (Jun): 6–11. https://doi.org/10.1016/j.commatsci.2014.03.004.
Tso, G. K., and K. K. Yau. 2007. “Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks.” Energy 32 (9): 1761–1768. https://doi.org/10.1016/j.energy.2006.11.010.
Vu, D. T., and N. D. Hoang. 2016. “Punching shear capacity estimation of FRP-reinforced concrete slabs using a hybrid machine learning approach.” Struct. Infrastruct. Eng. 12 (9): 1153–1161. https://doi.org/10.1080/15732479.2015.1086386.
Wang, X. W., W. L. Tian, Z. Y. Huang, M. J. Zhou, and X. Y. Zhao. 2009. “Analysis on punching shear behavior of the raft slab reinforced with steel fibers.” In Vol. 400 of Key engineering materials, 335–340. Bäch, Switzerland: Trans Tech Publications.
Wood, J. 2006. Quantitative study of the causes of the partial collapse on 20th March 1997. Chiddingfold, UK: Structural Studies & Design.
Yaseen, A. 2006. “Punching shear strength of steel fiber high strength reinforced concrete slabs.” Ph.D. dissertation, M.Sc. thesis, Dept. of Civil Engineering, Univ. of Salahaddin.
Yoo, D. Y., S. Kim, G. J. Park, J. J. Park, and S. W. Kim. 2017. “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites.” Compos. Struct. 174 (Aug): 375–388. https://doi.org/10.1016/j.compstruct.2017.04.069.
Zhang, X., M. Wang, J. Li, Z. Wang, J. Tong, and D. Liu. 2020. “Safety factor analysis of a tunnel face with an unsupported span in cohesive-frictional soils.” Comput. Geotech. 117 (Jan): 103221. https://doi.org/10.1016/j.compgeo.2019.103221.
Information & Authors
Information
Published In
Copyright
© 2021 American Society of Civil Engineers.
History
Received: Apr 7, 2020
Accepted: Feb 9, 2021
Published online: Apr 10, 2021
Published in print: Jun 1, 2021
Discussion open until: Sep 10, 2021
Authors
Metrics & Citations
Metrics
Citations
Download citation
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.