Chapter
May 30, 2014

Multiobjective Optimization to Explore Tradeoffs in Rainwater Harvesting Strategies for Urban Water Sustainability

Publication: World Environmental and Water Resources Congress 2014

Abstract

Urban water systems are designed for centralized management, where water is collected at a central location, treated, and delivered to a population of users through a pipe network. Decentralized systems may generate water and energy savings beyond conventional approaches, as they reduce the demands on the potable drinking water system and the energy required for treatment and conveyance. For example, rainwater harvesting systems that are installed at individual lots can be used to capture and reuse rainwater to irrigate lawns. This research explores the tradeoffs among infrastructure costs, energy savings, and water savings as consumers adopt rainwater harvesting within an existing centralized water supply system. The presence of rainwater harvesting within a community of individual households is a sociotechnical process, as interactions among existing water supply infrastructure, utility managers, and consumers can influence the adoption of decentralized technologies and the performance of centralized infrastructure. The urban water supply system is simulated as a complex adaptive system to analyze the water use behavior of consumers and their influence on system-level sustainability. An agent-based model is constructed to simulate households as water-consumer agents and is coupled with a system dynamics simulation of a water reservoir to capture the feedbacks that drive the household-level adoption of rainwater harvesting. An evolutionary computation approach is coupled with the agent-based modeling framework to optimize multiple objectives and explore tradeoffs among energy requirements, water savings, and the cost of rainwater harvesting systems. The framework is demonstrated for a virtual case study to develop management strategies for sizing rainwater harvesting cisterns and achieving sustainability goals for a sociotechnical water supply system.

Get full access to this article

View all available purchase options and get full access to this chapter.

Information & Authors

Information

Published In

Go to World Environmental and Water Resources Congress 2014
World Environmental and Water Resources Congress 2014
Pages: 1812 - 1818

History

Published online: May 30, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Alireza Mashhadi Ali [email protected]
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, CB 7908, Raleigh, NC, 27695. E-mail: [email protected]
Venu Kandiah [email protected]
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, CB 7908, Raleigh, NC, 27695. E-mail: [email protected]
Emily Zechman Berglund [email protected]
Department of Civil, Construction, and Environmental Engineering, North Carolina State University, CB 7908, Raleigh, NC, 27695. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Paper
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share