EFFECTS OF URBANIZATION ON GROUNDWATER

AN ENGINEERING CASE-BASED APPROACH FOR SUSTAINABLE DEVELOPMENT

SPONSORED BY
Urbanization Effects on Groundwater Task Committee
Groundwater Hydrology Committee
Groundwater Council

Environmental and Water Resources Institute (EWRI)
of the American Society of Civil Engineers

EDITED BY
Ni-Bin Chang

Published by the American Society of Civil Engineers
Foreword

For the past 50 years the population of the world has increased from 3 billion to 6.5 billion, and it is likely to rise by 2 billion by 2025 and by 3 billion by 2050. Following the current trends it is safe to say that the increasing number of people will dwell in cities. This will imply rapid urbanization, accelerating land use change, depleting groundwater resources, pollution of surface streams and rivers at an alarming rate, and decaying infrastructure at the same time. Water demand in urban regions would rise correspondingly or even more.

To make matters worse, there is the specter of climate change hanging over our heads. During the last one hundred years the temperature has arisen by nearly 0.6 degree C, and it is expected to rise by 2 degree C during the next 100 years. This would translate into the intensification of hydrologic cycle, rising sea levels, more variable patterns of rainfall (more intense rainfall, more extremes), more variable patterns of runoff (more frequently occurring floods and droughts), shorter snowfall season, spring snowmelt season starting earlier, increasing evaporation, deterioration in water quality, changing of ecosystems, migration of species, changes in the way plants grow, trees reacting to downpours, drying up of biomass during droughts, and quicker growing and then wilting of crops.

The impact on water management would entail serious ramifications. Larger floods would overwhelm existing control structures, reservoirs would not have enough water to store for people and plants during droughts, global warming would melt glaciers and cause snow to fall as rain, regimes of snow and ice, which are natural regulators-storing water in winter and releasing in summer, would undergo change, and there would be more swings between floods and droughts. It is likely that dams, after three decades of lull, might witness a come back.

Current patterns of use and abuse of water resources result in the amount being withdrawn dangerously close to the limit and even beyond; an alarming number of rivers no longer reach the sea: The Indus, the Rio Grande, the Colorado, the Murray-Darling, the Yellow River—the arteries of main grain growing areas in many parts of the world; freshwater fish populations are in precipitous decline: Fish stocks have fallen by 30% (WWF for Nature), larger than fall in populations of animals in any ecosystem; 50% of world’s wetlands have been drained, damaged or destroyed in the 20th century; in addition to fall in volume of freshwater in rivers, invasion of saltwater in delta, and changing in balance between freshwater and salt water.

As compared to the global water resources situation, local water shortages are even multiplying; Australia has suffered a decade long drought; Brazil and South America which depend on hydroelectric power have suffered repeated brownouts—not enough water to drive turbines; excess pumping of water from rivers feeding led to an almost collapse of Aral Sea in Central Asia in 1980; global water crisis impinges on the supplies of food and other goods.

Water resources situation in the U.S. is facing the same trend with decaying infrastructure built 50 to 100 years ago, i.e., where 17% of treated water is lost due to leaky pipes. In Texas, there is ongoing drought; ranchers have already lost nearly 1 billion; worst hit are Central Texas and the Hill Country; December 2008-February 2009 has been the driest on record; 60% of the state’s beef cows are in counties with severe to exceptional drought; in 2006, drought related
crop and livestock losses were the worst for a single year, totaling 4.1 billions; effects are long-
term.

The book "Effects of Urbanization on Groundwater: An Engineering Case-Based Approach to
Sustainable Development," edited by Ni-Bin Chang is timely and addresses a number of key
questions gravitating around the interactions amongst energy, environment, ecology, and
socio-economic paradigms. The subject matter of the book will help promote sustainable
management, with due consideration to linkages between regional economic development,
population growth, and terrestrial hydrologic systems. It states challenges of and opportunities
for science, technology and policy related to sustainable management of water.

Introducing sustainable development in urban regions in Chapter 1, the subject matter of the
book is organized into four parts encompassing the remaining 13 chapters, each part
corresponding to a specific theme. The theme of Part I is water supply and pollution
prevention. Storm water management with regional infiltration technologies is the theme of
Part II. Wastewater treatment and disposal with nutrient removal is the theme of Part III, and
low impact development with landscape architecture technologies is covered in Part IV. These
thematic areas cover the aspects from the fundamental theory to physical, chemical, and
biological processes to the coupled human and natural environment, and to the representation
of simulated evolutionary pathways. The linkage between these themes is thus becoming ever
more important. Models of differing complexity have been used to study a wealth of well
formulated engineering and management issues with risk assessment implications. Various real
world applications in each chapter explore different impacts with varying degrees of
sophistication.

The book will help improve our understanding of the sensitivity of key water quantity and
quality management targets to urban development. The book is therefore timely and makes a
strong case for sustainable development and management. The book is well written and well
organized. Dr. Chang deserves a lot of applause to assemble an excellent array of chapters
written by established professionals known for their technical contributions.

Professor Vijay P. Singh, Ph.D., D.Sc., Ph.D. (Hon.), P.E., P.H., D. WRE
Caroline and William N. Lehrer Distinguished Chair in Water Engineering
Professor of Civil and Environmental Engineering
Professor of Biological and Agricultural Engineering
Academician, GFA; President, FARA
President, G. B. S. Board
Editor-in-Chief, WSTL
Editor-in-Chief, ASCE Journal of Hydrologic Engineering

Department of Biological and Agricultural Engineering
Department of Civil and Environmental Engineering
Texas A and M University
Scoates Hall, 2117 TAMU
College Station, Texas 77843-2117, U.S.A.
Preface

During the last few decades, fast urbanization has altered such hydrologic cycle and related watershed processes that affect water resources and a range of potential consequences of urban development. This urbanization combined with economic growth and improving living standards in cities led to an addition to the quantity and complexity of generated wastewater effluents and stormwater runoff, which interrupt the hydrologic cycle and endanger the structure, function, and services provided by aquatic ecosystems. The negative feedbacks thus actuate an acute need to enhance fundamental understanding of the complex interactions within and among natural and human systems due to fast urbanization and its relevant countermeasures. These countermeasures that may lead to significant impacts on regional-scale hydrologic processes are basically linked with several disciplinary areas from water supply, to stormwater management, to wastewater treatment, and to groundwater conservation.

It is recognized that sustainable management is necessary at all phases of impact from the interactions among energy, environment, ecology and socioeconomic paradigms in human society. To promote the concept of sustainable management, this unique publication may be capable of presenting and applying sustainable systems engineering technologies to improve the overall understanding of the sensitivity of key water quantity and quality management targets to the types of human perturbations due to urban development. Hence, this book aims to address the following research topics in the context of the urbanization effects on groundwater:

- What are the potential impacts of water supply on groundwater aquifer and groundwater recharge rates, and how will these changes affect groundwater quality and/or quantity in both inland and coastal areas?
- What are the regional differences in stormwater and wastewater management technologies to urbanization?
- How can wetland extent and function be incorporated as an integral part of urban infrastructure systems, including effects on groundwater level?
- How will green infrastructure design philosophy influence the availability of suitable stormwater reuse and recharge for groundwater recovery?
- How can process-level models be improved to better represent the sensitivity of key water quality or quantity management targets to urbanization?
- How will changes in the low impact development strategies impact the hydrologic cycle in terms of both water quantity and quality in the nexus of stormwater management and groundwater conservation?

While focusing on the regional and urban watershed issues necessary for dealing with groundwater usage and quality endpoints, this book tries to answer all of the above questions as much as possible that capture important linkages between regional economic development, population growth, and terrestrial hydrologic systems.

Ni-Bin Chang, Editor
Orlando, Florida, March 25, 2009
This page intentionally left blank
Table of Contents

Chapter 1: Sustainable Development in Urban Regions
Ni-Bin Chang

1.1 Introduction 1
1.2 Current Scope and Feature Areas 2
1.3 Future Directions 4
1.4 References 5

Part I: Water Supply and Pollution Prevention

Chapter 2: Design, Installation, and Operation Challenges of Large-scale Aquifer Storage and Recovery Wells in San Antonio, South Texas
Tom Morris, Roberto Macias, and R. David G. Pyne 6

2.1 Introduction 6
2.2 Geological Formation 9
2.3 Site Characterization 10
2.4 Aquifer Recharge 12
2.5 Aquifer Discharge 13
2.6 Water Quality 14
2.7 Well Design 16
2.8 Well Drilling and Casing Installation 16
2.9 Geophysical Tests 17
2.10 Acidization and Chemical Treatment 18
2.11 Well Development 18
2.12 Pump Tests 19
2.13 Pump and Equipment Design 20
2.14 Installation Challenges and Critical Decisions 22
2.14.1 Groundwater Recharge Feasibility 22
2.14.2 Well Installation 23
2.14.3 Well Equipping 23
2.14.4 ASR Operations 24
2.15 Conclusions 24
2.16 References 25

Chapter 3: Environmental Assessment of Using Stone Quarries as Part of an Integrative Water Supply System in Fast Growing Urban Regions
Xing Fang, Ni-Bin Chang, Ming-Kuo Lee, and Lorraine W. Wolf 26
5.2.3 Hydrogeological Features

5.2.3.1 Surficial Aquifer System

5.2.3.2 Intermediate Confining Unit

5.2.3.3 Floridan Aquifer System

5.2.4 Hydraulic Characteristics

5.2.5 Potentiometric Levels

5.3 Computational Models – WASH123D

5.3.1 Multimedia and Multiprocesses

5.3.2 Mathematical Formulations

5.3.3 Design Capability of WASH123D

5.4 Model Setup

5.4.1 Domain Discretization

5.4.2 Boundary Conditions

5.4.3 Applied Stresses

5.4.4 Aquifer and Confining Unit Characteristics

5.5 Calibration – Simulation Results

5.5.1 Potentiometric Levels

5.5.2 Groundwater Flow

5.5.3 Areas of Recharge and Discharge

5.6 Applications

5.6.1 Urbanization Effects

5.6.2 Springflow Relationship to Distance

5.7 Conclusions

5.8 References

Part II: Stormwater Management with Regional Infiltration Technologies

Chapter 6: Groundwater Contamination Potential from Infiltration of Urban Stormwater Runoff
Shirley E. Clark, Robert Pitt, and Richard Field

6.1 Introduction

6.2 Groundwater Impacts from Stormwater Infiltration

6.2.1 Nutrients

6.2.2 Pesticides

6.2.3 Other Organic Compounds

6.2.4 Pathogens and Indicator Organisms

6.2.5 Metals

6.2.6 Salts

6.3 Case Study: Field Infiltration Devices Treating Urban Stormwater Runoff

6.3.1 Case Study #1: Water Quality below Stormwater Infiltration Basins in Long Island, NY

6.3.2 Case Study #2: Centre Routier in Lyon, France – Soil Accumulation over twenty-plus years of operation

ix
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>6.3.3 Case Study #3: North Carolina Field Bioretention Facility Assessment</td>
</tr>
<tr>
<td>129</td>
<td>6.3.4 Case Study #4: Effects of Compost Amendments in Hydraulically Poor Quality Soils</td>
</tr>
<tr>
<td>133</td>
<td>6.4 Laboratory Investigations into Soil’s Pollutant Removal Ability</td>
</tr>
<tr>
<td>134</td>
<td>6.4.1 Laboratory Study #1: Optimizing Bioretention Media</td>
</tr>
<tr>
<td>134</td>
<td>6.4.2 Laboratory Study #2: Assessment of Sand and Soil-based Stormwater Filter/Bioretention Media</td>
</tr>
<tr>
<td>136</td>
<td>6.4.3 Laboratory Study #3: Pollutant Removals by Horizon in a Silty Loam and Loamy Sand</td>
</tr>
<tr>
<td>138</td>
<td>6.5 Predicting Pollutant Removal in the Vadose Zone</td>
</tr>
<tr>
<td>138</td>
<td>6.5.1 Simplified Method for Predicting Groundwater Contamination</td>
</tr>
<tr>
<td>141</td>
<td>6.5.2 Vadose Zone Computer Model for Predicting Groundwater Contamination Potential and Basin Lifespan</td>
</tr>
<tr>
<td>144</td>
<td>6.5.3 Predicting Lifespan Based on Clogging and Soil Chemistry Changes</td>
</tr>
<tr>
<td>150</td>
<td>6.5.4 Screening Engineered Soils for Pollutant Removal</td>
</tr>
<tr>
<td>154</td>
<td>6.6 Conclusions</td>
</tr>
<tr>
<td>156</td>
<td>6.7 References</td>
</tr>
</tbody>
</table>

Chapter 7: Mitigation of Urban Stormwater and Polluted River Water Impacts on Water Quality with Riverbank Filtration

Monica B. Emelko, Nathalie Tufenkji, Micheal Stone, David L. Rudolph, and Jiri Marsalek

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>165</td>
<td>7.1 Introduction</td>
</tr>
<tr>
<td>167</td>
<td>7.2 Treatment Mechanisms and Operational Limitations</td>
</tr>
<tr>
<td>167</td>
<td>7.2.1 Hydrologic and Hydraulic Considerations</td>
</tr>
<tr>
<td>169</td>
<td>7.2.2 Chemical and Microbiological Considerations</td>
</tr>
<tr>
<td>174</td>
<td>7.2.3 Operational Considerations</td>
</tr>
<tr>
<td>175</td>
<td>7.3 RBF around the World</td>
</tr>
<tr>
<td>177</td>
<td>7.4 Surface Water Quality Changes due to Urban Stormwater Runoff and Pollution</td>
</tr>
<tr>
<td>179</td>
<td>7.5 Organics Removal</td>
</tr>
<tr>
<td>180</td>
<td>7.6 Inorganics Removal</td>
</tr>
<tr>
<td>182</td>
<td>7.7 Pathogen Removal</td>
</tr>
<tr>
<td>185</td>
<td>7.8 Compensation for Peaks and Shock Loads</td>
</tr>
<tr>
<td>187</td>
<td>7.9 Conclusions</td>
</tr>
<tr>
<td>188</td>
<td>7.10 References</td>
</tr>
</tbody>
</table>

Chapter 8: Use of Functionalized Filter Medium for Nutrient Removal in Stormwater Ponds

Ni-Bin Chang, Marty Wanielista, Mikhal Moberg, Fahim Hossain, and Ammarin Daranpob

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>199</td>
<td>8.1 Introduction</td>
</tr>
</tbody>
</table>

Effects of Urbanization on Groundwater
8.2 Design Philosophy 201
8.3 Literature Review 203
 8.3.1 Nutrient Concentrations in Stormwater and Groundwater in Florida 204
 8.3.2 Multifunctional Sorption Media for Nutrient Removal 204
 8.3.3 Nutrient Removal in Stormwater Runoff by Sorption Media 207
8.4 Materials and Methods 211
 8.4.1 Physical Properties of Sorption Media 211
 8.4.2 Experimental Setup of the Column Study 213
8.5 Results and Discussion 215
 8.5.1 Physical Properties of Sorption Media 215
 8.5.2 Experimental Results of the Column Study 216
8.6 Conclusions 220
8.7 References 220

Part III: Wastewater Treatment and Disposal with Nutrient Removal

Chapter 9: Comparative Assessment of Two Standard Septic Tank Drain Fields Using Different Sands with Recirculation for Nutrient Removal
Ni-Bin Chang, Marty Wanielista, Fahim Hossain, Zhemin Xuan, and Ammarin Daranpob 224

9.1 Introduction 224
9.2 Materials and Methods 226
 9.2.1 Technical Background 226
 9.2.2 Past Experience 228
 9.2.3 System Configuration 233
 9.2.4 Sampling and Chemical Analysis 235
 9.2.5 Microbiological Assessment 237
9.3 Results and Discussion 238
 9.3.1 Standard Drain field Performance for Nutrient Removal 238
 9.3.2 Microbiological Assessment 240
 9.3.3 Mass Balance in Treatment Processes 243
 9.3.4 Groundwater Monitoring 245
9.4 Conclusions 246
9.5 References 247

Chapter 10: Considerations Regarding Geochemical Transformations Downstream of Subsurface Wastewater Effluent Disposal Facilities
Paul P. Mathisen 251

10.1 Introduction 251
10.2 Background 253
 10.2.1 Wastewater Effluent Discharges 253

Effects of Urbanization on Groundwater
Part IV: Low Impact Development with Landscape Architecture Technologies

Chapter 12: Low Impact Development Practices: Designing to Infiltrate in Various Urban Environments
William F. Hunt, Robert G. Traver, Allen P. Davis, Clay H. Emerson, Kelly A. Collins, and James H. Stagge 308

12.1 Introduction 309
12.1.1 Low Impact Development 309
12.1.2 Regulating Infiltration 310
12.2 Infiltration BMPs Associated with Low Impact Development 311
12.2.1 Bioretention 311
12.2.2 Infiltration Wells and Trenches 314
12.2.3 Infiltrating Wetlands 316
12.2.4 Level Spreader / Vegetated Filter Strips 318
12.2.5 Permeable Pavement 320
12.2.5.1 Depth of Storage Layer 322
12.2.5.2 Surface Infiltration 322
12.2.5.3 Underdrain Need 322
12.2.5.4 Underdrain Configuration 322
12.2.5.5 Pavement Location in “Best” In-situ Soil 323
12.2.6 Swales 323
12.2.7 Water Harvesting – Irrigation Systems 325
12.3 Applications of Low Impact Development BMPs 327
12.3.1 Maryland State Highway Administration/ University of Maryland Swale Study 328
12.3.1.1 Results 329
12.3.1.2 Study Findings 329
12.3.2 Increasing Infiltration with Alternative Excavation Techniques 329
12.3.2.1 Results 331
12.3.2.2 Study Findings 332
12.3.3 Choosing Permeable Pavement Types Per Hydrology 332
12.3.3.1 Results 333
12.3.3.2 Study Findings 335
12.3.4 Villanova University Seasonal and Long Term LID Practice Infiltration Study 335
12.3.4.1 Pervious Concrete Infiltration Basin 335
12.3.4.2 Bioinfiltration Traffic Island 336
12.3.4.3 Results 337
12.3.4.4 Longevity of Infiltration BMPs 339
12.3.4.5 Study Findings 339
12.4 Conclusions 340
12.5 References 341
Chapter 13: Environmental Effects of Pervious Pavement as a Low Impact Development Installation in Urban Regions

Amy A. Rowe, Michael Borst, and Thomas P. O'Connor

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>344</td>
</tr>
<tr>
<td>13.2 Quantitative Assessment</td>
<td>347</td>
</tr>
<tr>
<td>13.2.1 Volume Reduction</td>
<td>347</td>
</tr>
<tr>
<td>13.2.2 Groundwater Recharge</td>
<td>348</td>
</tr>
<tr>
<td>13.3 Qualitative Assessment</td>
<td>349</td>
</tr>
<tr>
<td>13.3.1 Solids</td>
<td>350</td>
</tr>
<tr>
<td>13.3.2 Nutrients</td>
<td>352</td>
</tr>
<tr>
<td>13.3.3 Metals</td>
<td>354</td>
</tr>
<tr>
<td>13.3.4 Organic Pollutants</td>
<td>357</td>
</tr>
<tr>
<td>13.4 Recommendations</td>
<td>359</td>
</tr>
<tr>
<td>13.5 Conclusions</td>
<td>360</td>
</tr>
<tr>
<td>13.6 References</td>
<td>362</td>
</tr>
</tbody>
</table>

Chapter 14: Hydrological and Environmental Modeling Analyses of Pervious Pavement Impact in a Coastal City

Shiguo Xu and Jihui Gao

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>367</td>
</tr>
<tr>
<td>14.2 Model Development</td>
<td>368</td>
</tr>
<tr>
<td>14.2.1 The Model of Pervious Pavement Cells</td>
<td>368</td>
</tr>
<tr>
<td>14.2.2 Modeling the Resistance to Seawater Intrusion</td>
<td>371</td>
</tr>
<tr>
<td>14.3 Case Study</td>
<td>377</td>
</tr>
<tr>
<td>14.3.1 Infiltration through Pervious Pavement</td>
<td>377</td>
</tr>
<tr>
<td>14.3.2 Resistance to Seawater Intrusion</td>
<td>379</td>
</tr>
<tr>
<td>14.4 Conclusions</td>
<td>386</td>
</tr>
<tr>
<td>14.5 References</td>
<td>387</td>
</tr>
</tbody>
</table>

Appendix: About the Editor

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix: About the Editor</td>
<td>389</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>391</td>
</tr>
</tbody>
</table>